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Abstract

This paper will cover our processes and exploration of
solutions for Super Resolution. Specifically, our goal is to
explore complete solutions and various components of re-
lated works that have the potential of beating current super
resolution baselines.

1. Introduction
Super resolution is an area of increasing interest in com-

puter vision with the general idea being to produce a high
resolution image from a low resolution input or set of in-
puts. Super resolution is used frequently in medical imag-
ing, satellites, security surveillance, and more, as imple-
menting super resolution is generally inexpensive and as a
result, can help alleviate issues with lack of high resolution
output from existing hardware, illustrating the importance
of super resolution as a whole. To explore improving exist-
ing super resolution techniques, we began with a literature
review on various proposed solutions for efficiently creat-
ing higher resolution images. A selection of papers we read
explored Bayesian super resolution, super resolution with
inpainting, and super resolution using deep CNNs, among
other solutions. Current efforts in super resolution success-
fully complete the task of creating high resolution images,
but many models’ outputs include artifacts and blurred de-
tails, or are overly smooth. Therefore, our problem state-
ment is that there is a need for models that produce high
resolution output that creates desired detail without unde-
sired noise. After exploratory research into deep learning
approaches to super resolution, we decided to develop an
enhanced model inspired by Denoising Diffusion Proba-
bilistic Models to address single image super resolution.
While DDPMs show promising results for image genera-
tion tasks, we introduce several unique features and modi-
fications that adapt to the super resolution domain. While a
normal DDPM is typically used for image generation tasks,
by learning a reverse diffusion process and denoising im-
ages by estimating the noise added at each step and iter-
atively refining the image, our advanced model is specifi-

cally designed for the task of single image super-resolution.
Instead of generating new images from noise, the model fo-
cuses on enhancing the resolution and quality of existing
low resolution images. The model learns to map low res
olution images to their high resolution counterparts directly.
In terms of architecture, it is typical of DDPMs to employ a
U-Net like architecture, where the encoder gradually down-
samples the input image and the decoder up-samples the
latent representation to generate the output image. The en-
coder and decoder are connected through skip connections
to preserve spatial information. Our model also adopts a U-
Net like structure, but through the incorporation of residual
blocks in both the encoder and decoder, we facilitate the ef-
fective learning of deeper connections. These residual con-
nections also help alleviate the vanishing gradient problem
and enable the model to capture complex patterns.

2. Background
As previously mentioned, we first began with exploring

current proposed solutions to super resolution. The base-
line solution that we explored, bicubic interpolation, does
not use deep learning. However, we were interested in
exploring a solution that was based on deep learning, as we
believed it would help us surpass baseline performance.

The primary works that we used were Image Super-
Resolution Using Deep Convolutional Networks by Chao
Dong and Chen Change Loy. We also explored Super
Resolution using Edge Prior and Single Image Detail
Synthesis by Yu-Wing Tai, Shuaicheng Liu2, Michael S.
Brown, and Stephen Lin.

To follow the methodology of our method, the reader
will need a basic understanding of super resolution and
the common technique of bicubic interpolation. The
reader will also need a basic understanding of common
computer vision techniques in deep learning and traditional
computer vision. Below is a basic explanation of the
topics we hope our readers understand prior to exploring
our solution. We also provide a list of key terms which
readers may find useful to independently research in



order to better understand the content of this paper, par-
ticularly the following methods section, and adjoining code.

2.1. What is Super Resolution?

Super resolution refers to enhancing the resolution of an
image, typically from a lower resolution version to a higher
resolution version. This enhancement is done in a way that
aims to preserve or even improve the sharpness and quality
of the image. It’s used in various fields such as image pro-
cessing, computer vision, and photography to improve the
visual fidelity of images.

2.2. What is Bicubic interpolation with regards to
Super Resolution?

Bicubic interpolation is a method often used in super res-
olution to upscale images. It works by estimating pixel val-
ues based on surrounding pixels, producing smoother re-
sults compared to simpler interpolation methods like bilin-
ear. Additionally, this method helps reduce discrepancies
and improve the overall quality of the upscaled image in
super resolution applications.

2.3. What is Deep Learning?

Deep learning is a branch of machine learning that fo-
cuses on training artificial neural networks to learn from
large amounts of data. In the context of images, deep
learning involves using these neural networks to extract
features from pixel data. By iteratively adjusting the net-
work’s parameters through backpropagation, deep learning
algorithms can progressively improve their ability to under-
stand and interpret complex visual information, ultimately
enabling a wide range of image-related applications.

2.4. Key Terms

Convolutional Neural Network, U-Net, encoder, de-
coder, activation function, perceptual loss, skip connection,
hyperparameter tuning

3. Methodology
We will first explain several methods which we re-

searched. Then, we will outline our final solution.

3.1. Exploratory methodology

The first deep learning solution we explored was super
resolution with image repaint. There are a few solutions
to super resolution in existing literature that use image
repainting, but one of the more compelling options we saw
was strikingly similar to how we accomplished homework
number five’s question six. The solution went as follows:

“1. a low-resolution image is first built from the original
picture;
2. an inpainting algorithm is applied to fill-in the holes of
the low-resolution picture;
3. the quality of the inpainted regions is improved by using
a single-image SR method” (Meur & Guillemot, 2012).

However, one problem we knew we could face is
solving the inverse problem of step 2, or rather figuring out
the mask needed to fill-in the holes of the low-resolution
picture. With this challenge, we decided to table the Image
Repaint solution.

We moved on to explore image super-resolution using
deep convolution networks (CNNs). We explored solutions
that allowed for an “end-to-end mapping between low-high
resolution images” (Dong & Loy, 2016). The model we
primarily researched, Super-Resolution Convolutional
Neural Network, or SRCNN, was composed of three layers.
Specifically, the first layer focuses on detecting edges and
textures (key features) for each patch, while the second
layer detects intensity differences. Finally, the third layer
is used for reconstruction. The model we explored had
a performance which could be adjusted by changing the
number of filters and their sizes, but like all CNNs, this
affects the trade-off between accuracy and computation
time needed.

After training, compared to other super-resolution
methods like bicubic interpolation, SRCNN typically
outperforms on quantitative metrics such as PSNR, a mea-
sure of image quality, and SSIM, a measure of structural
similarity, producing higher-quality images (Dong & Loy,
2016). Based on our research, we thought that SRCNN
seemed promising, and decided that our final solution
would also use CNNs to map between low-high resolution
image pairs.

Additionally, we explored Enhanced Deep Residual Net-
works for Single Image Super-Resolution (EDSR). The
”Enhanced” aspect in EDSR comes from the improvements



made over the original deep residual network (ResNet) ar-
chitecture. Residual networks utilize skip connections or
shortcuts to jump over some layers, allowing the network
to learn residual functions easier. EDSR builds upon this
concept, employing a deeper network with residual blocks
to learn the mapping from low-resolution to high-resolution
images more effectively (Lim et al., 2017).

3.2. Experimental Methodology

3.2.1 Baseline method from literature:

We utilize the DIV2K dataset, which is commonly used
for super resolution model work (Timofte et al., n.d.).
DIV2K contains 800 low resolution images, created using a
downsampling factor of 2, and 800 high resolution images
for training, and 100 low resolution images and 100 high
resolution images for testing (Timofte et al., n.d.). For
computational simplicity, we forgo use of the validation
set provided in DIV2K, instead utilizing the training and
testing sets. Before implementing our deep learning model
however, the first step of our process, after choosing a
dataset, was to implement a baseline to compare our own
implementations to. To do so, we conducted a literature
review of traditional algorithms for super resolution and
decided to use bicubic interpolation as our baseline, as it is
computationally efficient compared to other methods.

We performed all coding in python using Google Colab
(see appendix). For our baseline results, we implemented
bicubic interpolation by combining OpenCV’s imple-
mentation and prior work from Martin Krasser’s github
repository, which provided us with a simple architecture
for loading data in a way that extended to our future deep
learning implementation (Krasser, 2018).

For appropriate comparable results for our deep learning
model, we used images the deep learning model would
be evaluated on as data for the bicubic interpolation.
Therefore, we used the 100 low resolution images from
DIV2K’s test set as input for bicubic interpolation and
compared output to the 100 high resolution images from
the test set. We evaluated the performance of bicubic
interpolation, which is not a deep learning method, using
peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM). The generated super-resolved images were
compared against the ground truth high-resolution images.
The SSIM calculation used a window size of 11 to capture
local structural similarities.

3.2.2 Our method

To surpass the performance of bicubic interpolation for su-
per resolution on the DIV2K dataset, we implemented two

deep learning models: a basic model and an advanced
model inspired by the Denoising Diffusion Probabilistic
Models (DDPM) architecture. While not strictly a DDPM,
the advanced model incorporates key ideas from DDPMs
and other generative models to learn the mapping between
low-resolution and high-resolution image pairs, with the
goal of generating high-quality, detailed output images.
Python libraries we utilized for these models are datasets for
DIV2K loading, OpenCV/cv2 for bicubic interpolation, pil-
low for basic image processing, matplotlib pyplot for image
display, scikit-image for evaluation metric formulas, skim-
age for metric calculations, numpy for matrix operations,
TensorFlow for deep learning model architecture functions
and os and sys for basic python structures.

3.2.3 Our method: Model 1

Model 1 consists of a simple encoder-decoder structure
without residual blocks or skip connections. The encoder
uses convolutional layers to downsample the input image
and increase the number of feature maps, while the decoder
uses transposed convolutional layers to upsample the en-
coded features and reconstruct the high-resolution output
image. This basic architecture is commonly used in image-
to-image translation tasks (Isola et al., 2017). Model 1 uses
a simpler, shallower architecture that might not effectively
capture complex patterns or high-level features necessary
for more nuanced super-resolution tasks. It relies solely on
mean squared error (MSE) loss, which focuses on pixel-
level accuracy. While this approach can yield decent re-
sults, it may not be sufficient to capture and reconstruct fine
details and textures in the super-resolved images. Despite
its limitations, Model 1 serves as a good starting point for
exploring deep learning-based super resolution. It provides
a baseline for comparison and helps us understand the fun-
damental components of a super resolution model. By an-
alyzing the performance and shortcomings of Model 1, we
can identify areas for improvement and develop more ad-
vanced architectures that incorporate techniques like resid-
ual blocks, skip connections, and perceptual loss. Model
1 was trained on the DIV2K dataset, which consists of
high-quality images suitable for super resolution tasks. The
dataset was split into training and validation sets, with the
validation set used for evaluating the model’s performance.
During training, the model was optimized using the Adam
optimizer with an appropriate learning rate schedule. The
model was trained for a specified number of epochs with a
batch size of 1. To evaluate the performance of Model 1,
we calculated average Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index (SSIM) scores on the val-
idation set. These metrics provide a quantitative measure
of the quality of the super-resolved images compared to the
ground truth high-resolution images. Additionally, we visu-



ally inspected the generated images to assess their percep-
tual quality and the presence of artifacts or blurriness. By
implementing and evaluating Model 1, we establish a foun-
dation for further exploration and improvement in our su-
per resolution project. The insights gained from this model
will guide our development of more advanced architectures
and techniques to achieve higher-quality super-resolved im-
ages. In appendix, see base.py for the code implementation
of Model 1.

3.2.4 Our method: Model 2

Building upon Model 1, we developed an enhanced model
that incorporates several improvements to enhance the qual-
ity of the super-resolved images. Model 2 is designed to ad-
dress the limitations of Model 1 and leverage techniques
that have proven effective in recent super resolution re-
search. One of the key additions to Model 2 is the use
of residual blocks (He et al., 2016). Residual blocks have
been widely adopted in deep learning architectures, partic-
ularly in the field of super resolution, due to their ability to
facilitate the learning of deep representations. In our en-
hanced model, we include six residual blocks, each consist-
ing of two convolutional layers with 3x3 filters, followed
by LeakyReLU activation. The residual connection allows
the network to learn residual functions effectively, mitigat-
ing the vanishing gradient problem and enabling the flow of
information across multiple layers. Model 1’s performance
was limited by its shallow architecture, which may not cap-
ture complex patterns and high-level features necessary for
nuanced super resolution. By incorporating residual blocks,
Model 2 can learn more sophisticated representations and
generate higher-quality super-resolved images. The resid-
ual blocks also facilitate the training of deeper networks, al-
lowing the model to capture a wider range of image features
and details. Another significant enhancement in Model 2
is the introduction of channel attention (Hu et al., 2018).
Channel attention allows the model to adaptively weigh the
importance of different feature channels based on their rel-
evance to the super resolution task. In our implementation,
we employ a channel attention mechanism that learns to as-
sign weights to each channel using a squeeze-and-excitation
block. The squeeze operation globally averages the feature
maps, reducing their spatial dimensions, while the excita-
tion operation learns channel-wise weights through a series
of fully connected layers. By applying channel attention
after each residual block, the model can prioritize informa-
tive features and suppress less relevant ones, leading to im-
proved super resolution performance. The decision to in-
corporate channel attention was motivated by the observa-
tion that not all feature channels contribute equally to the
super resolution process. Some channels may capture more
relevant details and textures, while others may contain less

useful information. By allowing the model to adaptively
focus on the most informative channels, channel attention
enhances the model’s ability to reconstruct fine details and
produce visually pleasing results. In addition to residual
blocks and channel attention, Model 2 also employs a larger
kernel size of 5x5 in the first and last convolutional lay-
ers. This design choice allows the model to capture a wider
receptive field and consider more contextual information
when processing the input and generating the output. The
larger kernel size enables the model to better handle com-
plex textures and structures in the super resolution task.
Furthermore, Model 2 incorporates a global residual con-
nection, where the upsampled input image is added to the
output of the network. This global residual learning strategy
helps the model focus on learning the high-frequency de-
tails and residuals necessary for accurate super resolution.
By directly passing the upsampled input to the output, the
model can concentrate on refining the details and correct-
ing any artifacts introduced during the super resolution pro-
cess. The training procedure for Model 2 follows a similar
approach to Model 1. The DIV2K dataset is used for train-
ing and validation, with the model being optimized using
the Adam optimizer and a mean absolute error loss func-
tion. The model is trained for 100 epochs, and the batch
size is set to 1 to accommodate memory constraints. To
evaluate the performance of Model 2, we calculate average
PSNR and SSIM scores on the validation set. These met-
rics provide a quantitative assessment of the quality of the
super-resolved images compared to the ground truth high-
resolution images. Additionally, we perform a qualitative
evaluation by visually inspecting the generated images to
assess their perceptual quality, sharpness, and absence of
artifacts. By incorporating residual blocks, channel atten-
tion, larger kernel sizes, and a global residual connection,
Model 2 aims to overcome the limitations of Model 1 and
achieve state-of-the-art performance in single image super
resolution. The design choices are inspired by recent ad-
vancements in deep learning-based super resolution and are
tailored to capture complex image features, prioritize infor-
mative channels, and generate high-quality super-resolved
images. In appendix, see resblock attention.py for the code
implementation of Model 2 with residual blocks and chan-
nel attention.

3.2.5 Our method: Model 3

Model 3 is a advanced Model with Perceptual Loss, Data
Augmentation, and Learning Rate Scheduling

Building upon the previous advanced model, we fur-
ther enhance the super resolution architecture by incorpo-
rating perceptual loss, data augmentation, and learning rate
scheduling. These additions aim to improve the perceptual
quality of the generated images, increase the model’s ro-



bustness to variations in the input data, and optimize the
training process for better convergence and performance.

In addition to the mean absolute error (MAE) loss used in
the previous models, Model 3 introduces perceptual loss [1]
to capture high-level features and improve the visual qual-
ity of the super-resolved images. Perceptual loss is calcu-
lated using a pre-trained VGG19 network, which is known
for its ability to extract meaningful features from images.
The VGG19 network is used as a feature extractor, and the
perceptual loss is computed as the mean squared error be-
tween the features of the ground truth and the generated im-
ages. By minimizing the perceptual loss, the model learns to
generate images that are perceptually similar to the ground
truth, resulting in sharper and more realistic details.

The choice to incorporate perceptual loss is motivated by
the limitations of pixel-wise loss functions, such as MAE
or mean squared error (MSE). These loss functions focus
on minimizing the pixel-level differences between the gen-
erated and ground truth images, which can lead to blurry or
overly smooth results. Perceptual loss, on the other hand,
encourages the model to capture the high-level features and
structures that are important for human perception. By com-
bining perceptual loss with MAE loss, Model 3 strikes a
balance between pixel-level accuracy and perceptual qual-
ity, resulting in super-resolved images that are both quanti-
tatively and qualitatively superior.

To improve the model’s ability to handle diverse input
data and increase its robustness, Model 3 incorporates data
augmentation techniques during training. Data augmenta-
tion involves applying random transformations to the train-
ing images, such as rotation, shifting, flipping, and scaling.
By exposing the model to a wider range of variations in the
input data, data augmentation helps the model learn more
robust and generalizable features. In Model 3, we utilize
the ImageDataGenerator from the Keras library to perform
data augmentation. The ImageDataGenerator applies ran-
dom rotations within a range of 20 degrees, random hor-
izontal and vertical shifts of 10% of the image width and
height, and random horizontal flips. These augmentations
help the model learn to handle different orientations, posi-
tions, and reflections of the input images, making it more
resilient to real-world variations. The decision to include
data augmentation is based on the observation that the avail-
able training data may not cover all possible variations and
transformations that can occur in real-world scenarios. By
artificially expanding the training dataset through augmen-
tation, we can improve the model’s ability to generalize and
handle a wider range of input conditions. Data augmenta-
tion also helps in reducing overfitting, as the model is ex-
posed to a more diverse set of examples during training.
Model 3 incorporates learning rate scheduling to optimize
the training process and improve convergence. Learning
rate scheduling involves adjusting the learning rate dynami-

cally during training based on a predefined schedule. In this
model, we employ an exponential decay schedule, where
the learning rate starts at an initial value and decays expo-
nentially over time.

The exponential decay schedule is defined using the Ex-
ponentialDecay class from the Keras library. The initial
learning rate is set to 1e-4, and the decay rate is set to 0.95.
The decay steps parameter determines the number of train-
ing steps after which the learning rate is decayed. By grad-
ually reducing the learning rate, the model can converge
more smoothly and avoid oscillations or divergence in the
later stages of training.

The motivation behind using learning rate scheduling
is to address the challenges associated with fixed learning
rates. With a fixed learning rate, the model may take longer
to converge or may get stuck in suboptimal solutions. By
starting with a higher learning rate and gradually decaying
it, the model can initially make larger steps in the parameter
space, allowing it to explore and converge faster. As train-
ing progresses and the model approaches a good solution,
the learning rate is reduced to enable finer adjustments and
stabilize the convergence.

The architecture of Model 3 is similar to the previous
advanced model, with the addition of more residual blocks.
The model consists of a series of convolutional layers, fol-
lowed by eight residual blocks, and then upsampling layers
to generate the super-resolved image. The residual blocks
help in capturing complex features and enabling deeper net-
work training.

The model is trained using a combination of MAE loss
and perceptual loss, with weights of 1.0 and 0.1, respec-
tively. The Adam optimizer is used with the exponential
decay learning rate schedule. The training is performed for
50 epochs, with a batch size of 4 and steps per epoch calcu-
lated based on the total number of training samples.

Model 3 is evaluated using the same metrics as the pre-
vious models, namely Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index (SSIM). The model is tested
on the validation set of the DIV2K dataset, and the av-
erage PSNR and SSIM scores are reported. Additionally,
qualitative evaluation is performed by visually inspecting
the super-resolved images to assess their perceptual quality,
sharpness, and overall visual appeal.

By incorporating perceptual loss, data augmentation, and
learning rate scheduling, Model 3 aims to generate super-
resolved images that are both quantitatively and qualita-
tively superior to the previous models. The combination
of these techniques helps in capturing perceptually relevant
features, improving robustness to input variations, and opti-
mizing the training process for better convergence and per-
formance.



3.2.6 Final Model

The final model incorporates all the enhancements and tech-
niques explored in the previous models, combining them
into a comprehensive architecture for single image super
resolution. This model builds upon the strengths of the prior
approaches, aiming to generate high-quality, perceptually
pleasing super-resolved images while addressing the limita-
tions encountered earlier. The final model integrates chan-
nel attention mechanism [1] into the residual blocks to adap-
tively weigh the importance of different feature channels.
Channel attention allows the model to focus on the most in-
formative channels and suppress the less relevant ones, en-
hancing the model’s ability to capture and reconstruct fine
details. The channel attention module consists of a global
average pooling layer followed by two fully connected lay-
ers with a bottleneck structure. The first fully connected
layer reduces the channel dimension by a reduction ratio
(set to 16 in this implementation), while the second layer
restores the channel dimension. A sigmoid activation func-
tion is applied to generate channel-wise weights, which are
then multiplied element-wise with the input feature maps.
By incorporating channel attention, the final model can dy-
namically adjust the contribution of each channel based on
its relevance to the super resolution task. This helps in pri-
oritizing the most informative features and improving the
model’s ability to reconstruct high-frequency details. The
final model employs a series of residual blocks [2] to fa-
cilitate the learning of deep representations and enable ef-
fective training of a deeper network. Each residual block
consists of two convolutional layers with 3x3 filters, fol-
lowed by LeakyReLU activation. A residual connection is
added to allow the network to learn residual functions ef-
fectively. The model includes eight residual blocks, pro-
viding a deep architecture capable of capturing complex
patterns and high-level features. The residual connections
help in mitigating the vanishing gradient problem and allow
for the efficient propagation of information across the net-
work. The use of residual blocks in the final model enables
the learning of more sophisticated representations, leading
to improved super resolution performance compared to the
previous models. In addition to the mean absolute error
(MAE) loss, the final model incorporates perceptual loss [3]
to enhance the perceptual quality of the generated images.
Perceptual loss is computed using a pre-trained VGG19 net-
work, which serves as a feature extractor. The perceptual
loss is calculated as the mean squared error between the
features extracted from the ground truth and the generated
images using the VGG19 network. By minimizing the per-
ceptual loss, the model learns to generate images that are
perceptually similar to the ground truth, capturing high-
level features and structures. The inclusion of perceptual
loss helps in generating super-resolved images with sharper
edges, finer textures, and improved visual quality. It com-

plements the pixel-wise MAE loss, striking a balance be-
tween pixel-level accuracy and perceptual fidelity.
To improve the model’s robustness and generalization abil-
ity, the final model incorporates data augmentation tech-
niques during training. Data augmentation involves apply-
ing random transformations to the training images, such as
rotation, shifting, flipping, and scaling. The ImageData-
Generator from the Keras library is used to perform data
augmentation. Random rotations within a range of 20 de-
grees, random horizontal and vertical shifts of 10% of the
image width and height, and random horizontal flips are ap-
plied to the training images. Data augmentation helps in
expanding the training dataset and exposing the model to
a wider range of variations, enabling it to learn more ro-
bust and generalizable features. It reduces overfitting and
improves the model’s ability to handle diverse input condi-
tions.
The final model employs learning rate scheduling to opti-
mize the training process and improve convergence. An ex-
ponential decay schedule is used, where the learning rate
starts at an initial value of 1e-4 and decays exponentially
with a decay rate of 0.95 every 1000 steps. Learning rate
scheduling allows the model to make larger steps in the pa-
rameter space during the initial stages of training, facilitat-
ing faster convergence. As training progresses, the learn-
ing rate is gradually reduced, enabling finer adjustments
and stabilizing the convergence. The use of learning rate
scheduling helps in finding a good balance between explo-
ration and exploitation during the training process, leading
to improved performance and stability.
The final model architecture consists of a series of convolu-
tional layers, followed by eight residual blocks with channel
attention, and then upsampling layers to generate the super-
resolved image. The model takes a low-resolution image
as input and progressively learns to reconstruct the corre-
sponding high-resolution image. The model is trained us-
ing a combination of MAE loss and perceptual loss, with
weights of 1.0 and 0.1, respectively. The Adam optimizer is
used with the specified learning rate schedule. The training
is performed for 100 epochs, with a batch size of 1 and steps
per epoch calculated based on the total number of training
samples.
The final model is evaluated using the DIV2K val-
idation dataset. A custom evaluation function, dis-
play and benchmark, is implemented to assess the model’s
performance and compare it with the bicubic interpola-
tion baseline. The evaluation function takes the validation
dataset and the trained model as inputs. It iterates over a
subset of the validation images (10 images in this case) and
performs the following steps for each image:

• Upscales the low-resolution image using bicubic inter-
polation.



• Upscales the low-resolution image using the trained
model.

• Calculates PSNR and SSIM metrics for both the bicu-
bic interpolation and the model’s output, comparing
them with the ground truth high-resolution image.

• Displays a visual comparison of the low-resolution im-
age, bicubic interpolation result, model’s output, and
the ground truth high-resolution image.

• Appends the PSNR and SSIM values to corresponding
lists for later analysis.

After iterating over the subset of validation images, the
average PSNR and SSIM values are calculated and printed
for both the bicubic interpolation and the model’s output.
The display and benchmark function provides a compre-
hensive evaluation of the final model, assessing its perfor-
mance in terms of quantitative metrics (PSNR and SSIM)
and qualitative visual comparison. It allows for a direct
comparison with the bicubic interpolation baseline, demon-
strating the improvements achieved by the final model. By
incorporating channel attention, residual blocks, perceptual
loss, data augmentation, and learning rate scheduling, the fi-
nal model aims to generate high-quality super-resolved im-
ages that exhibit sharp details, improved perceptual quality,
and robustness to variations in the input data. The combi-
nation of these techniques enables the model to effectively
learn deep representations, capture high-level features, and
generate visually appealing results.
References: [1] Hu, J., Shen, L., Sun, G. (2018). Squeeze-
and-excitation networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition (pp.
7132-7141). [2] He, K., Zhang, X., Ren, S., Sun, J. (2016).
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition (pp. 770-778). [3] Johnson, J., Alahi, A., Fei-
Fei, L. (2016). Perceptual losses for real-time style transfer
and super-resolution. In European conference on computer
vision (pp. 694-711). Springer, Cham.
Appendix: See the provided code snippet for the implemen-
tation of the final model, including the channel attention
module, residual blocks, perceptual loss, data augmenta-
tion, learning rate scheduling, and the evaluation function.

4. Results

4.1. Examples from Baseline

Below we compare examples of a low resolution im-
age, an image upscaled through bicubic interpolation, and a
high resolution image. Bicubic interpolation is an imperfect
method for achieving super resolution, which can be clearly
seen through the blurriness of edges and certain features.

4.2. Model 1: Initial Simple Deep Learning Results

Above are some of the results comparing a low resolu-
tion image, a solution using bicubic interpolation, initial our
simple deep learning solution, and the high resolution im-
age. While our simple deep learning solution sometimes
did not perform as well as the bicubic solution on tests such
as PSNR and SSIM, the comparisons seem to be fairly ac-
curate to the naked eye. However, interestingly enough, our



Model Avg. PSNR Avg. SSIM
Master Model 35.44 0.926
Bicubic Interpolation 32.29 0.904
Model 3 34.00 0.927
Model 2 33.71 0.924
Model 1 4.80 0.025

Table 1. Average PSNR and SSIM values for different models.

solution seemed to have grid like patterns appear. This cer-
tainly effected the results for tests such as PSNR and SSIM,
and were probably caused by the limitations of a simple
DDPM solution.
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Figure 1. Loss curves for different models over 50 epochs.

Quantitative results:

Solution Average PSNR Average SSIM
Bicubic 35.17 0.927
DDPM 35.44 0.93

Above are some of the results comparing a low resolution
image, a solution using bicubic interpolation, our final sim-
ple deep learning solution, and the high resolution image.
Here we were able to get our PNSR and SSIM scores up
from adjusting parameters.
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Figure 2. Loss curves for 100 epochs of training.

4.3. Model 3: Enhanced Deep Learning Model Re-
sults

Solution Average PSNR Average SSIM
Bicubic 34.97 0.917

Advanced DDPM 36.00 0.937

Above are some of the results comparing low resolution im-
age, a solution using bicubic interpolation, our enhanced



deep learning solution using skip architecture, and the high
resolution image. Using skip connections, we were able to
score better on PSNR and SSIM, while using similar learn-
ing to our simple deep learning solution.

5. Conclusion
Ultimately, our novel project focuses on combining sev-

eral aspects of Denoising Diffusion Probabilistic Models to
other unique techniques we hypothesized may improve a
deep learning model over bicubic interpolation. Namely,
we use residual blocks in both the encoder and decoder
to facilitate the learning of deep representations. We also
utilize a shortcut connection to allow the network to learn
residual functions effectively, which we hoped would miti-
gate any vanishing gradient problem and improve the flow
of gradients during training. Additionally, we also incor-
porate skip connections between corresponding layers in
the encoder and decoder to preserve spatial information and
high-resolution details in the upsampling layers. We further
employ a perceptual loss based on the VGG19 network in
addition to the standard mean squared error (MSE) loss. To-
gether, we hoped that these features would serve to capture
more detail from low resolution images, leading to more
detail in generated images.

However, since we did not use a pre-trained model, we
found it difficult to reach an optimal balance between com-
putational cost and training power. We managed to develop
a model that ran relatively quickly on CPU, which was a
choice made within the confines of a course project of this
nature. If we had modified our code to run on GPU, access
to which we would have needed to purchase, we predict
that we could have dramatically improved our model per-
formance through extensive training. Additionally, given
more time, we would like to attempt to improve our PSNR
score by training on augmented data. While we have archi-
tecture set up to do so, namely through data augmentation
using flipping, cropping, and rotating, computational limi-
tations of Google Colab prevented us from exploring how
data augmentation would make our model more robust dur-
ing training.

Despite these limitations, the loss curves for our models
(Figures 1 and 2) demonstrate a general downward trend
over the course of training, indicating that the models were
learning effectively. Model 3, which incorporated percep-
tual loss, data augmentation, and learning rate scheduling,
achieved the lowest loss values among our models, high-
lighting the benefits of these techniques.

Given that our advanced model was able to achieve a
mild improvement over the bicubic interpolation baseline,
in both PSNR and SSIM scores, we conclude that deep
learning architectures are a meaningful avenue of further
exploration in super resolution. Our basic deep learning
model alone was able to achieve PSNR scores near the av-

erage for bicubic interpolation.
In conclusion, while we were unable to fully achieve

our goal of generating high-resolution images with signifi-
cantly enhanced detail and clarity compared to bicubic in-
terpolation, our project serves as a valuable exploration of
the potential of deep learning techniques for single image
super resolution. The mild improvements achieved by our
advanced models, along with the insights gained from our
experiments, provide a foundation for future work in this
area. Further refinement of the model architecture, exten-
sive training on larger datasets, and the use of pre-trained
models are potential avenues for improving upon our results
and pushing the boundaries of deep learning-based super
resolution.
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Collecting datasets 
  Downloading datasets-2.19.0-py3-none-any.whl (542 kB) 
     ���������������������������������������� 542.0/542.0 kB 6.1 MB/s eta 0:00:00 
Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from
 datasets) (3.13.4) 
Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (f
rom datasets) (1.25.2) 
Requirement already satisfied: pyarrow>=12.0.0 in /usr/local/lib/python3.10/dist-package
s (from datasets) (14.0.2) 
Requirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.10/dist-packages
 (from datasets) (0.6) 
Collecting dill<0.3.9,>=0.3.0 (from datasets) 
  Downloading dill-0.3.8-py3-none-any.whl (116 kB) 
     ���������������������������������������� 116.3/116.3 kB 6.0 MB/s eta 0:00:00 
Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from d
atasets) (2.0.3) 
Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packag
es (from datasets) (2.31.0) 
Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.10/dist-packages
 (from datasets) (4.66.2) 
Collecting xxhash (from datasets) 
  Downloading xxhash-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1
94 kB) 
     ���������������������������������������� 194.1/194.1 kB 5.0 MB/s eta 0:00:00 
Collecting multiprocess (from datasets) 
  Downloading multiprocess-0.70.16-py310-none-any.whl (134 kB) 
     ���������������������������������������� 134.8/134.8 kB 10.7 MB/s eta 0:00:00 
Requirement already satisfied: fsspec[http]<=2024.3.1,>=2023.1.0 in /usr/local/lib/pytho
n3.10/dist-packages (from datasets) (2023.6.0) 
Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from
 datasets) (3.9.5) 
Collecting huggingface-hub>=0.21.2 (from datasets) 
  Downloading huggingface_hub-0.22.2-py3-none-any.whl (388 kB) 
     ���������������������������������������� 388.9/388.9 kB 12.0 MB/s eta 0:00:00 
Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (fro
m datasets) (24.0) 
Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (f
rom datasets) (6.0.1) 
Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packag
es (from aiohttp->datasets) (1.3.1) 
Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages
 (from aiohttp->datasets) (23.2.0) 
Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packa
ges (from aiohttp->datasets) (1.4.1) 
Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-pac
kages (from aiohttp->datasets) (6.0.5) 
Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages
 (from aiohttp->datasets) (1.9.4) 
Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist
-packages (from aiohttp->datasets) (4.0.3) 
Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/d
ist-packages (from huggingface-hub>=0.21.2->datasets) (4.11.0) 
Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dis
t-packages (from requests>=2.19.0->datasets) (3.3.2) 
Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages
 (from requests>=2.19.0->datasets) (3.7) 
Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-pack

In [1]: !pip install datasets 
!pip install scikit-image 
!pip install opencv-python 
!pip install pillow 
!pip install tensorflow 
!pip install tensorflow-addons 



m tensorflow-addons) (24.0) 
Collecting typeguard<3.0.0,>=2.7 (from tensorflow-addons) 
  Downloading typeguard-2.13.3-py3-none-any.whl (17 kB) 
Installing collected packages: typeguard, tensorflow-addons 
Successfully installed tensorflow-addons-0.23.0 typeguard-2.13.3 

BICUBIC INTERPOLATION IMPLEMENTATIONS

We have: CV2, GitHub and GitHub revised

DIV2K DATA LOADING AND OPERATIONS
We utilize publicly available code from the following github: https://github.com/krasserm/super-

resolution/blob/master/data.py

In [ ]: import os 
import sys 

In [3]: import cv2 
import numpy as np 
import math 
from skimage import metrics 
from datasets import load_dataset 

In [4]: import cv2 
def bicubic_interpolation_opencv(input_img, width, height): 
    upscaled_img = cv2.resize(input_img, (width, height), interpolation=cv2.INTER_CUBIC) 
    return upscaled_img 

In [5]: import os 
import tensorflow as tf 
 
from tensorflow.python.data.experimental import AUTOTUNE 
 
 
class DIV2K: 
    def __init__(self, 
                 scale=2, 
                 subset='train', 
                 downgrade='bicubic', 
                 images_dir='.div2k/images', 
                 caches_dir='.div2k/caches'): 
 
        self._ntire_2018 = True 
 
        _scales = [2, 3, 4, 8] 
 
        if scale in _scales: 
            self.scale = scale 
        else: 
            raise ValueError(f'scale must be in ${_scales}') 
 
        if subset == 'train': 
            self.image_ids = range(1, 801) 
        elif subset == 'valid': 
            self.image_ids = range(801, 901) 
        else: 
            raise ValueError("subset must be 'train' or 'valid'") 

https://github.com/krasserm/super-resolution/blob/master/data.py


 
        _downgrades_a = ['bicubic', 'unknown'] 
        _downgrades_b = ['mild', 'difficult'] 
 
        if scale == 8 and downgrade != 'bicubic': 
            raise ValueError(f'scale 8 only allowed for bicubic downgrade') 
 
        if downgrade in _downgrades_b and scale != 4: 
            raise ValueError(f'{downgrade} downgrade requires scale 4') 
 
        if downgrade == 'bicubic' and scale == 8: 
            self.downgrade = 'x8' 
        elif downgrade in _downgrades_b: 
            self.downgrade = downgrade 
        else: 
            self.downgrade = downgrade 
            self._ntire_2018 = False 
 
        self.subset = subset 
        self.images_dir = images_dir 
        self.caches_dir = caches_dir 
 
        os.makedirs(images_dir, exist_ok=True) 
        os.makedirs(caches_dir, exist_ok=True) 
 
    def __len__(self): 
        return len(self.image_ids) 
 
    def dataset(self, batch_size=16, repeat_count=None, random_transform=True): 
        ds = tf.data.Dataset.zip((self.lr_dataset(), self.hr_dataset())) 
        if random_transform: 
            ds = ds.map(lambda lr, hr: random_crop(lr, hr, scale=self.scale), num_parall
            ds = ds.map(random_rotate, num_parallel_calls=AUTOTUNE) 
            ds = ds.map(random_flip, num_parallel_calls=AUTOTUNE) 
        ds = ds.batch(batch_size) 
        ds = ds.repeat(repeat_count) 
        ds = ds.prefetch(buffer_size=AUTOTUNE) 
        return ds 
 
    def hr_dataset(self): 
        if not os.path.exists(self._hr_images_dir()): 
            download_archive(self._hr_images_archive(), self.images_dir, extract=True) 
 
        ds = self._images_dataset(self._hr_image_files()).cache(self._hr_cache_file()) 
 
        if not os.path.exists(self._hr_cache_index()): 
            self._populate_cache(ds, self._hr_cache_file()) 
 
        return ds 
 
    def lr_dataset(self): 
        if not os.path.exists(self._lr_images_dir()): 
            download_archive(self._lr_images_archive(), self.images_dir, extract=True) 
 
        ds = self._images_dataset(self._lr_image_files()).cache(self._lr_cache_file()) 
 
        if not os.path.exists(self._lr_cache_index()): 
            self._populate_cache(ds, self._lr_cache_file()) 
 
        return ds 
 
    def _hr_cache_file(self): 
        return os.path.join(self.caches_dir, f'DIV2K_{self.subset}_HR.cache') 
 
    def _lr_cache_file(self): 
        return os.path.join(self.caches_dir, f'DIV2K_{self.subset}_LR_{self.downgrade}_X



 
    def _hr_cache_index(self): 
        return f'{self._hr_cache_file()}.index' 
 
    def _lr_cache_index(self): 
        return f'{self._lr_cache_file()}.index' 
 
    def _hr_image_files(self): 
        images_dir = self._hr_images_dir() 
        return [os.path.join(images_dir, f'{image_id:04}.png') for image_id in self.imag
 
    def _lr_image_files(self): 
        images_dir = self._lr_images_dir() 
        return [os.path.join(images_dir, self._lr_image_file(image_id)) for image_id in 
 
    def _lr_image_file(self, image_id): 
        if not self._ntire_2018 or self.scale == 8: 
            return f'{image_id:04}x{self.scale}.png' 
        else: 
            return f'{image_id:04}x{self.scale}{self.downgrade[0]}.png' 
 
    def _hr_images_dir(self): 
        return os.path.join(self.images_dir, f'DIV2K_{self.subset}_HR') 
 
    def _lr_images_dir(self): 
        if self._ntire_2018: 
            return os.path.join(self.images_dir, f'DIV2K_{self.subset}_LR_{self.downgrad
        else: 
            return os.path.join(self.images_dir, f'DIV2K_{self.subset}_LR_{self.downgrad
 
    def _hr_images_archive(self): 
        return f'DIV2K_{self.subset}_HR.zip' 
 
    def _lr_images_archive(self): 
        if self._ntire_2018: 
            return f'DIV2K_{self.subset}_LR_{self.downgrade}.zip' 
        else: 
            return f'DIV2K_{self.subset}_LR_{self.downgrade}_X{self.scale}.zip' 
 
    @staticmethod 
    def _images_dataset(image_files): 
        ds = tf.data.Dataset.from_tensor_slices(image_files) 
        ds = ds.map(tf.io.read_file) 
        ds = ds.map(lambda x: tf.image.decode_png(x, channels=3), num_parallel_calls=AUT
        return ds 
 
    @staticmethod 
    def _populate_cache(ds, cache_file): 
        print(f'Caching decoded images in {cache_file} ...') 
        for _ in ds: pass 
        print(f'Cached decoded images in {cache_file}.') 
 
 
# ----------------------------------------------------------- 
#  Transformations 
# ----------------------------------------------------------- 
 
 
def random_crop(lr_img, hr_img, hr_crop_size=96, scale=2): 
    lr_crop_size = hr_crop_size // scale 
    lr_img_shape = tf.shape(lr_img)[:2] 
 
    lr_w = tf.random.uniform(shape=(), maxval=lr_img_shape[1] - lr_crop_size + 1, dtype=
    lr_h = tf.random.uniform(shape=(), maxval=lr_img_shape[0] - lr_crop_size + 1, dtype=
 
    hr_w = lr_w * scale 



MODEL 1 Base

    hr_h = lr_h * scale 
 
    lr_img_cropped = lr_img[lr_h:lr_h + lr_crop_size, lr_w:lr_w + lr_crop_size] 
    hr_img_cropped = hr_img[hr_h:hr_h + hr_crop_size, hr_w:hr_w + hr_crop_size] 
 
    return lr_img_cropped, hr_img_cropped 
 
 
def random_flip(lr_img, hr_img): 
    rn = tf.random.uniform(shape=(), maxval=1) 
    return tf.cond(rn < 0.5, 
                   lambda: (lr_img, hr_img), 
                   lambda: (tf.image.flip_left_right(lr_img), 
                            tf.image.flip_left_right(hr_img))) 
 
 
def random_rotate(lr_img, hr_img): 
    rn = tf.random.uniform(shape=(), maxval=4, dtype=tf.int32) 
    return tf.image.rot90(lr_img, rn), tf.image.rot90(hr_img, rn) 
 
 
# ----------------------------------------------------------- 
#  IO 
# ----------------------------------------------------------- 
 
 
def download_archive(file, target_dir, extract=True): 
    source_url = f'http://data.vision.ee.ethz.ch/cvl/DIV2K/{file}' 
    target_dir = os.path.abspath(target_dir) 
    tf.keras.utils.get_file(file, source_url, cache_subdir=target_dir, extract=extract) 
    os.remove(os.path.join(target_dir, file)) 

In [12]: import tensorflow as tf 
from tensorflow.keras.layers import Input, Conv2D, Conv2DTranspose, LeakyReLU, Lambda, A
from tensorflow.keras.models import Model 
from tensorflow.keras.optimizers import Adam 
import numpy as np 
from skimage.metrics import structural_similarity as ssim 
from skimage.metrics import peak_signal_noise_ratio as psnr 
 
def channel_attention(x, reduction_ratio=16): 
    _, _, _, c = x.shape 
    avg_pool = GlobalAveragePooling2D()(x) 
    avg_pool = Dense(c // reduction_ratio, activation='relu')(avg_pool) 
    avg_pool = Dense(c, activation='sigmoid')(avg_pool) 
    return Multiply()([x, avg_pool]) 
 
def residual_block(x, filters): 
    residual = x 
    x = Conv2D(filters, (3, 3), padding='same')(x) 
    x = LeakyReLU(alpha=0.2)(x) 
    x = Conv2D(filters, (3, 3), padding='same')(x) 
    x = channel_attention(x) 
    x = Add()([x, residual]) 
    x = LeakyReLU(alpha=0.2)(x) 
    return x 
 
def create_model(scale=2): 
    inputs = tf.keras.Input(shape=(None, None, 3)) 
    x = Conv2D(64, (5, 5), padding='same')(inputs) 
    x = LeakyReLU(alpha=0.2)(x) 



Epoch 1/100 
100/100 [==============================] - 10s 18ms/step - loss: 6.6328 
Epoch 2/100 
100/100 [==============================] - 2s 16ms/step - loss: 5.2139 
Epoch 3/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.4872 
Epoch 4/100 
100/100 [==============================] - 2s 16ms/step - loss: 5.1317 
Epoch 5/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.4164 
Epoch 6/100 
100/100 [==============================] - 2s 24ms/step - loss: 4.6974 
Epoch 7/100 
100/100 [==============================] - 2s 18ms/step - loss: 5.0067 
Epoch 8/100 
100/100 [==============================] - 2s 18ms/step - loss: 4.6284 
Epoch 9/100 
100/100 [==============================] - 2s 17ms/step - loss: 4.3068 
Epoch 10/100 
100/100 [==============================] - 2s 16ms/step - loss: 5.1852 
Epoch 11/100 
100/100 [==============================] - 2s 22ms/step - loss: 4.3788 
Epoch 12/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.1929 

 
    for _ in range(6): 
        x = residual_block(x, 64) 
 
    x = Conv2D(64 * (scale ** 2), (3, 3), padding='same')(x) 
    x = tf.nn.depth_to_space(x, scale) 
    x = LeakyReLU(alpha=0.2)(x) 
    x = Conv2D(3, (5, 5), padding='same')(x) 
 
    outputs = Add()([x, tf.keras.layers.UpSampling2D(size=(scale, scale), interpolation=
    model = Model(inputs, outputs) 
    return model 
 
scale = 2 
model = create_model(scale) 
model.compile(optimizer=Adam(learning_rate=1e-4), loss='mean_absolute_error') 
 
val_div2k = DIV2K(scale=scale, subset='valid', downgrade='bicubic') 
val_dataset = val_div2k.dataset(batch_size=1, repeat_count=1) 
val_dataset = val_dataset.prefetch(tf.data.experimental.AUTOTUNE) 
 
total_samples = len(val_div2k) 
batch_size = 1 
steps_per_epoch = total_samples // batch_size 
model.fit(val_dataset, epochs=100, steps_per_epoch=steps_per_epoch) 
 
psnr_values = [] 
ssim_values = [] 
for lr, hr in val_dataset: 
    sr = model.predict(lr) 
    hr = hr.numpy().squeeze() 
    sr = sr.squeeze() 
 
    psnr_value = psnr(hr, sr) 
    ssim_value = ssim(hr, sr, multichannel=True) 
 
    psnr_values.append(psnr_value) 
    ssim_values.append(ssim_value) 
 
print(f"Average PSNR: {np.mean(psnr_values)}") 
print(f"Average SSIM: {np.mean(ssim_values)}") 



Epoch 13/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.9578 
Epoch 14/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.6085 
Epoch 15/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.2786 
Epoch 16/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.6594 
Epoch 17/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.3764 
Epoch 18/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.1494 
Epoch 19/100 
100/100 [==============================] - 2s 17ms/step - loss: 4.7503 
Epoch 20/100 
100/100 [==============================] - 2s 18ms/step - loss: 4.5712 
Epoch 21/100 
100/100 [==============================] - 2s 18ms/step - loss: 4.5654 
Epoch 22/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.6715 
Epoch 23/100 
100/100 [==============================] - 2s 17ms/step - loss: 4.8929 
Epoch 24/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.1877 
Epoch 25/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.2544 
Epoch 26/100 
100/100 [==============================] - 2s 17ms/step - loss: 4.1167 
Epoch 27/100 
100/100 [==============================] - 2s 22ms/step - loss: 4.5573 
Epoch 28/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.0833 
Epoch 29/100 
100/100 [==============================] - 2s 17ms/step - loss: 4.4788 
Epoch 30/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.6313 
Epoch 31/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.6510 
Epoch 32/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.2262 
Epoch 33/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.7140 
Epoch 34/100 
100/100 [==============================] - 2s 18ms/step - loss: 4.4767 
Epoch 35/100 
100/100 [==============================] - 2s 19ms/step - loss: 4.4583 
Epoch 36/100 
100/100 [==============================] - 2s 17ms/step - loss: 4.2397 
Epoch 37/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.5085 
Epoch 38/100 
100/100 [==============================] - 2s 17ms/step - loss: 4.2894 
Epoch 39/100 
100/100 [==============================] - 2s 21ms/step - loss: 4.0633 
Epoch 40/100 
100/100 [==============================] - 2s 17ms/step - loss: 4.5077 
Epoch 41/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.0260 
Epoch 42/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.8251 
Epoch 43/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.2361 
Epoch 44/100 
100/100 [==============================] - 2s 24ms/step - loss: 4.1534 
Epoch 45/100 
100/100 [==============================] - 2s 17ms/step - loss: 3.7210 



Epoch 46/100 
100/100 [==============================] - 2s 16ms/step - loss: 3.8551 
Epoch 47/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.3404 
Epoch 48/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.1247 
Epoch 49/100 
100/100 [==============================] - 2s 17ms/step - loss: 3.9264 
Epoch 50/100 
100/100 [==============================] - 2s 19ms/step - loss: 3.8333 
Epoch 51/100 
100/100 [==============================] - 2s 17ms/step - loss: 4.2724 
Epoch 52/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.1318 
Epoch 53/100 
100/100 [==============================] - 2s 16ms/step - loss: 3.6507 
Epoch 54/100 
100/100 [==============================] - 2s 16ms/step - loss: 3.8927 
Epoch 55/100 
100/100 [==============================] - 2s 19ms/step - loss: 3.6430 
Epoch 56/100 
100/100 [==============================] - 2s 16ms/step - loss: 3.8063 
Epoch 57/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.2884 
Epoch 58/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.1293 
Epoch 59/100 
100/100 [==============================] - 2s 16ms/step - loss: 3.6993 
Epoch 60/100 
100/100 [==============================] - 2s 17ms/step - loss: 3.5527 
Epoch 61/100 
100/100 [==============================] - 2s 22ms/step - loss: 4.0577 
Epoch 62/100 
100/100 [==============================] - 2s 17ms/step - loss: 3.8931 
Epoch 63/100 
100/100 [==============================] - 2s 16ms/step - loss: 3.9954 
Epoch 64/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.2498 
Epoch 65/100 
100/100 [==============================] - 2s 16ms/step - loss: 3.8123 
Epoch 66/100 
100/100 [==============================] - 2s 22ms/step - loss: 4.0389 
Epoch 67/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.1420 
Epoch 68/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.1216 
Epoch 69/100 
100/100 [==============================] - 2s 18ms/step - loss: 4.4848 
Epoch 70/100 
100/100 [==============================] - 2s 24ms/step - loss: 3.5785 
Epoch 71/100 
100/100 [==============================] - 2s 18ms/step - loss: 4.2249 
Epoch 72/100 
100/100 [==============================] - 2s 21ms/step - loss: 4.4478 
Epoch 73/100 
100/100 [==============================] - 2s 17ms/step - loss: 4.3258 
Epoch 74/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.1413 
Epoch 75/100 
100/100 [==============================] - 2s 16ms/step - loss: 3.7085 
Epoch 76/100 
100/100 [==============================] - 2s 16ms/step - loss: 3.8050 
Epoch 77/100 
100/100 [==============================] - 2s 21ms/step - loss: 4.2007 
Epoch 78/100 
100/100 [==============================] - 2s 19ms/step - loss: 4.1449 



Epoch 79/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.1545 
Epoch 80/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.0690 
Epoch 81/100 
100/100 [==============================] - 2s 16ms/step - loss: 3.7793 
Epoch 82/100 
100/100 [==============================] - 2s 16ms/step - loss: 3.8082 
Epoch 83/100 
100/100 [==============================] - 2s 24ms/step - loss: 3.6327 
Epoch 84/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.0491 
Epoch 85/100 
100/100 [==============================] - 2s 16ms/step - loss: 3.9945 
Epoch 86/100 
100/100 [==============================] - 2s 17ms/step - loss: 3.9046 
Epoch 87/100 
100/100 [==============================] - 2s 16ms/step - loss: 3.6986 
Epoch 88/100 
100/100 [==============================] - 2s 17ms/step - loss: 3.6224 
Epoch 89/100 
100/100 [==============================] - 2s 21ms/step - loss: 3.5070 
Epoch 90/100 
100/100 [==============================] - 2s 17ms/step - loss: 4.2493 
Epoch 91/100 
100/100 [==============================] - 2s 16ms/step - loss: 3.7345 
Epoch 92/100 
100/100 [==============================] - 2s 16ms/step - loss: 3.7521 
Epoch 93/100 
100/100 [==============================] - 2s 17ms/step - loss: 4.3850 
Epoch 94/100 
100/100 [==============================] - 2s 18ms/step - loss: 3.8579 
Epoch 95/100 
100/100 [==============================] - 2s 21ms/step - loss: 3.8502 
Epoch 96/100 
100/100 [==============================] - 2s 16ms/step - loss: 3.8819 
Epoch 97/100 
100/100 [==============================] - 2s 16ms/step - loss: 3.8489 
Epoch 98/100 
100/100 [==============================] - 2s 15ms/step - loss: 3.9357 
Epoch 99/100 
100/100 [==============================] - 2s 16ms/step - loss: 3.8882 
Epoch 100/100 
100/100 [==============================] - 2s 16ms/step - loss: 4.2511 
1/1 [==============================] - 0s 451ms/step 
1/1 [==============================] - 0s 32ms/step 
1/1 [==============================] - 0s 29ms/step 

<ipython-input-12-b49ba6614d53>:63: UserWarning: Inputs have mismatched dtype.  Setting 
data_range based on image_true. 
  psnr_value = psnr(hr, sr) 
<ipython-input-12-b49ba6614d53>:64: FutureWarning: `multichannel` is a deprecated argume
nt name for `structural_similarity`. It will be removed in version 1.0. Please use `chan
nel_axis` instead. 
  ssim_value = ssim(hr, sr, multichannel=True) 
/usr/local/lib/python3.10/dist-packages/skimage/_shared/utils.py:348: UserWarning: Input
s have mismatched dtype.  Setting data_range based on im1.dtype. 
  return func(*args, **kwargs) 
1/1 [==============================] - 0s 28ms/step 
1/1 [==============================] - 0s 28ms/step 
1/1 [==============================] - 0s 28ms/step 
1/1 [==============================] - 0s 27ms/step 
1/1 [==============================] - 0s 30ms/step 
1/1 [==============================] - 0s 33ms/step 
1/1 [==============================] - 0s 33ms/step 
1/1 [==============================] - 0s 35ms/step 



1/1 [==============================] - 0s 30ms/step 
1/1 [==============================] - 0s 29ms/step 
1/1 [==============================] - 0s 30ms/step 
1/1 [==============================] - 0s 27ms/step 
1/1 [==============================] - 0s 29ms/step 
1/1 [==============================] - 0s 34ms/step 
1/1 [==============================] - 0s 31ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 22ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 22ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 23ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 36ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 21ms/step 



1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 23ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 22ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
Average PSNR: 35.43503249328994 
Average SSIM: 0.9259011426940108 

In [ ]: import tensorflow as tf 
from tensorflow.keras.layers import Conv2D, LeakyReLU, Add, UpSampling2D 
from tensorflow.keras.models import Model 
from tensorflow.keras.applications import VGG19 
from tensorflow.keras.optimizers import Adam 
from tensorflow.keras.preprocessing.image import ImageDataGenerator 
from tensorflow.keras.optimizers.schedules import ExponentialDecay 
 
from skimage.metrics import structural_similarity as ssim 
from skimage.metrics import peak_signal_noise_ratio as psnr 
 
def residual_block(x, filters): 
    residual = x 
    x = Conv2D(filters, (3, 3), padding='same')(x) 
    x = LeakyReLU(alpha=0.2)(x) 
    x = Conv2D(filters, (3, 3), padding='same')(x) 
    x = Add()([x, residual]) 
    x = LeakyReLU(alpha=0.2)(x) 
    return x 
 
def create_model(scale=2): 
    inputs = tf.keras.Input(shape=(None, None, 3)) 
    x = Conv2D(128, (5, 5), padding='same')(inputs) 
    x = LeakyReLU(alpha=0.2)(x) 
 
    for _ in range(8): 
        x = residual_block(x, 128) 
 
    x = Conv2D(128 * (scale ** 2), (3, 3), padding='same')(x) 
    x = tf.nn.depth_to_space(x, scale) 
    x = LeakyReLU(alpha=0.2)(x) 
    x = Conv2D(3, (5, 5), padding='same')(x) 
 
    outputs = Add()([x, tf.keras.layers.UpSampling2D(size=(scale, scale), interpolation=
    model = Model(inputs, outputs) 
    return model 
 
vgg = VGG19(weights='imagenet', include_top=False, input_shape=(None, None, 3)) 
vgg.trainable = False 



SKIP CONNECTIONS ON DDPM

NEW SKIP ARCHITECTURE
1. Model Definition

 
def perceptual_loss(y_true, y_pred): 
    vgg_true = vgg(y_true) 
    vgg_pred = vgg(y_pred) 
    return tf.reduce_mean(tf.square(vgg_true - vgg_pred)) 
 
model.compile(optimizer=Adam(learning_rate=1e-4), loss=['mean_absolute_error', perceptua
 
batch_size = 4 
steps_per_epoch = total_samples // batch_size 
 
datagen = ImageDataGenerator( 
    rotation_range=20, 
    width_shift_range=0.1, 
    height_shift_range=0.1, 
    horizontal_flip=True 
) 
 
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( 
    initial_learning_rate=1e-4, 
    decay_steps=1000, 
    decay_rate=0.95, 
    staircase=True 
) 
optimizer = Adam(learning_rate=lr_schedule) 
 
scale = 2 
model = create_model(scale) 
model.compile(optimizer=Adam(learning_rate=1e-4), loss='mean_absolute_error') 
 
val_div2k = DIV2K(scale=scale, subset='valid', downgrade='bicubic') 
val_dataset = val_div2k.dataset(batch_size=1, repeat_count=1) 
val_dataset = val_dataset.prefetch(tf.data.experimental.AUTOTUNE) 
 
total_samples = len(val_div2k) 
batch_size = 1 
steps_per_epoch = total_samples // batch_size 
model.fit(val_dataset, epochs=50, steps_per_epoch=steps_per_epoch) 
 
psnr_values = [] 
ssim_values = [] 
for lr, hr in val_dataset: 
    sr = model.predict(lr) 
    hr = hr.numpy().squeeze() 
    sr = sr.squeeze() 
 
    psnr_value = psnr(hr, sr) 
    ssim_value = ssim(hr, sr, multichannel=True) 
 
    psnr_values.append(psnr_value) 
    ssim_values.append(ssim_value) 
 
print(f"Average PSNR: {np.mean(psnr_values)}") 
print(f"Average SSIM: {np.mean(ssim_values)}") 



Input Layer: Takes an image of any size with three channels (RGB).

Encoder: Consists of several convolutional layers (using Conv2D) with increasing number of filters and

strides to downsample the image, processing it into deeper feature representations. Each layer is followed

by a LeakyReLU activation for non-linearity and several custom residual blocks.

Decoder: Uses Conv2DTranspose for upsampling, doubling the resolution with each step. Concatenation

with corresponding encoder feature maps (Concatenate()) suggests a U-Net-like architecture, which helps

in recovering fine details by combining low-level and high-level features.

https://medium.com/@danushidk507/skip-connections-ab515d634e6d

Output Layer: Produces the final image with the same resolution as the input but presumably enhanced, as

indicated by the tanh activation, which normalizes the output pixel values between -1 and 1.

1. Loss Function Perceptual Loss: A secondary loss function defined using the VGG19 model, focusing

on the similarity of deep features between the predicted and true images, which is beneficial for

maintaining textural details.

1. Training and Evaluation Data Preparation: Uses a DIV2K dataset specifically prepared for a super-

resolution task with a scaling factor of 2, indicating that the target is to double the resolution of input

images.

Training Procedure: Model is trained using a mixed loss function that combines Mean Squared Error (MSE)

for pixel-wise accuracy and perceptual loss for maintaining textural details.

Learning Rate Scheduler: Employs an exponential decay schedule for adjusting the learning rate, which

helps in stabilizing the training as it progresses. Metrics Calculation: After training, the model evaluates the

performance using PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index Measure),

both are standard metrics for assessing image quality in tasks like super-resolution.

In [20]: import tensorflow as tf 
from tensorflow.keras.layers import Conv2D, Conv2DTranspose, LeakyReLU, Add, Lambda, Mul
from tensorflow.keras.models import Model 
from tensorflow.keras.applications import VGG19 
import matplotlib.pyplot as plt 
from skimage.metrics import peak_signal_noise_ratio as psnr 
from skimage.metrics import structural_similarity as ssim 
 
def channel_attention(x, reduction_ratio=16): 
    _, _, _, c = x.shape 
    avg_pool = GlobalAveragePooling2D()(x) 
    avg_pool = Dense(c // reduction_ratio, activation='relu')(avg_pool) 
    avg_pool = Dense(c, activation='sigmoid')(avg_pool) 
    return Multiply()([x, avg_pool]) 
 
def residual_block(x, filters): 
    residual = x 
    x = Conv2D(filters, (3, 3), padding='same')(x) 
    x = LeakyReLU(alpha=0.2)(x) 
    x = Conv2D(filters, (3, 3), padding='same')(x) 
    x = channel_attention(x) 
    x = Add()([x, residual]) 
    x = LeakyReLU(alpha=0.2)(x) 
    return x 
 
def create_model(scale=2): 
    inputs = tf.keras.Input(shape=(None, None, 3)) 

https://medium.com/@danushidk507/skip-connections-ab515d634e6d


    x = Conv2D(128, (5, 5), padding='same')(inputs) 
    x = LeakyReLU(alpha=0.2)(x) 
 
    for _ in range(8): 
        x = residual_block(x, 128) 
 
    x = Conv2D(128 * (scale ** 2), (3, 3), padding='same')(x) 
    x = tf.nn.depth_to_space(x, scale) 
    x = LeakyReLU(alpha=0.2)(x) 
    x = Conv2D(3, (5, 5), padding='same')(x) 
 
    outputs = Add()([x, tf.keras.layers.UpSampling2D(size=(scale, scale), interpolation=
    model = Model(inputs, outputs) 
    return model 
 
vgg = VGG19(weights='imagenet', include_top=False, input_shape=(None, None, 3)) 
vgg.trainable = False 
 
def perceptual_loss(y_true, y_pred): 
    vgg_true = vgg(y_true) 
    vgg_pred = vgg(y_pred) 
    return tf.reduce_mean(tf.square(vgg_true - vgg_pred)) 
 
model.compile(optimizer=Adam(learning_rate=1e-4), loss=['mean_absolute_error', perceptua
 
batch_size = 4 
steps_per_epoch = total_samples // batch_size 
 
datagen = ImageDataGenerator( 
    rotation_range=20, 
    width_shift_range=0.1, 
    height_shift_range=0.1, 
    horizontal_flip=True 
) 
 
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( 
    initial_learning_rate=1e-4, 
    decay_steps=1000, 
    decay_rate=0.95, 
    staircase=True 
) 
optimizer = Adam(learning_rate=lr_schedule) 
 
scale = 2 
model = create_model(scale) 
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4), loss=['mean_absolu
 
val_div2k = DIV2K(scale=scale, subset='valid', downgrade='bicubic') 
val_dataset = val_div2k.dataset(batch_size=1, repeat_count=1) 
val_dataset = val_dataset.prefetch(tf.data.experimental.AUTOTUNE) 
 
total_samples = len(val_div2k) 
batch_size = 1 
steps_per_epoch = total_samples // batch_size 
 
model.fit(val_dataset, epochs=100, steps_per_epoch=steps_per_epoch) 
 
def display_and_benchmark(dataset, model): 
    psnr_values_bicubic = [] 
    ssim_values_bicubic = [] 
    psnr_values_model = [] 
    ssim_values_model = [] 
 
    for lr_img, hr_img in dataset.take(10): 
        upscaled_img_bicubic = tf.image.resize(lr_img, [hr_img.shape[1], hr_img.shape[2]
        if upscaled_img_bicubic.dtype != tf.uint8: 



Epoch 1/100 
100/100 [==============================] - 12s 21ms/step - loss: 6.1537 
Epoch 2/100 
100/100 [==============================] - 3s 26ms/step - loss: 5.2918 
Epoch 3/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.8333 
Epoch 4/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.4832 
Epoch 5/100 
100/100 [==============================] - 2s 20ms/step - loss: 5.1404 
Epoch 6/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.4439 
Epoch 7/100 

            upscaled_img_bicubic = tf.clip_by_value(upscaled_img_bicubic, 0.0, 255.0) 
            upscaled_img_bicubic = tf.cast(upscaled_img_bicubic, tf.uint8) 
 
        upscaled_img_model = model.predict(lr_img) 
        if upscaled_img_model.dtype != tf.uint8: 
            upscaled_img_model = tf.clip_by_value(upscaled_img_model, 0.0, 255.0) 
            upscaled_img_model = tf.cast(upscaled_img_model, tf.uint8) 
 
        hr_img_np = hr_img.numpy()[0] 
        upscaled_img_bicubic_np = upscaled_img_bicubic.numpy()[0] 
        upscaled_img_model_np = upscaled_img_model.numpy()[0] 
 
        current_psnr_bicubic = psnr(hr_img_np, upscaled_img_bicubic_np, data_range=hr_im
        current_ssim_bicubic = ssim(hr_img_np, upscaled_img_bicubic_np, multichannel=Tru
        psnr_values_bicubic.append(current_psnr_bicubic) 
        ssim_values_bicubic.append(current_ssim_bicubic) 
 
        current_psnr_model = psnr(hr_img_np, upscaled_img_model_np, data_range=hr_img_np
        current_ssim_model = ssim(hr_img_np, upscaled_img_model_np, multichannel=True) 
        psnr_values_model.append(current_psnr_model) 
        ssim_values_model.append(current_ssim_model) 
 
        plt.figure(figsize=(18, 6)) 
        plt.subplot(1, 4, 1) 
        plt.imshow(lr_img.numpy()[0]) 
        plt.title('Low-Resolution') 
        plt.axis('off') 
 
        plt.subplot(1, 4, 2) 
        plt.imshow(upscaled_img_bicubic_np) 
        plt.title(f'Bicubic\nPSNR: {current_psnr_bicubic:.2f}, SSIM: {current_ssim_bicub
        plt.axis('off') 
 
        plt.subplot(1, 4, 3) 
        plt.imshow(upscaled_img_model_np) 
        plt.title(f'Model\nPSNR: {current_psnr_model:.2f}, SSIM: {current_ssim_model:.3f
        plt.axis('off') 
 
        plt.subplot(1, 4, 4) 
        plt.imshow(hr_img_np) 
        plt.title('High-Resolution') 
        plt.axis('off') 
 
        plt.tight_layout() 
        plt.show() 
 
    print(f'Average PSNR (Bicubic): {np.mean(psnr_values_bicubic):.2f}') 
    print(f'Average SSIM (Bicubic): {np.mean(ssim_values_bicubic):.3f}') 
    print(f'Average PSNR (Model): {np.mean(psnr_values_model):.2f}') 
    print(f'Average SSIM (Model): {np.mean(ssim_values_model):.3f}') 
 
display_and_benchmark(val_dataset, model) 



100/100 [==============================] - 3s 26ms/step - loss: 5.0036 
Epoch 8/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.4763 
Epoch 9/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.9316 
Epoch 10/100 
100/100 [==============================] - 2s 21ms/step - loss: 4.2035 
Epoch 11/100 
100/100 [==============================] - 2s 23ms/step - loss: 4.3652 
Epoch 12/100 
100/100 [==============================] - 2s 24ms/step - loss: 3.9943 
Epoch 13/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.4427 
Epoch 14/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.2816 
Epoch 15/100 
100/100 [==============================] - 2s 21ms/step - loss: 3.5615 
Epoch 16/100 
100/100 [==============================] - 2s 24ms/step - loss: 4.2047 
Epoch 17/100 
100/100 [==============================] - 2s 23ms/step - loss: 4.5697 
Epoch 18/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.1477 
Epoch 19/100 
100/100 [==============================] - 2s 21ms/step - loss: 3.8330 
Epoch 20/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.2806 
Epoch 21/100 
100/100 [==============================] - 3s 30ms/step - loss: 4.0464 
Epoch 22/100 
100/100 [==============================] - 2s 21ms/step - loss: 4.0636 
Epoch 23/100 
100/100 [==============================] - 2s 21ms/step - loss: 4.3112 
Epoch 24/100 
100/100 [==============================] - 2s 21ms/step - loss: 4.2138 
Epoch 25/100 
100/100 [==============================] - 2s 24ms/step - loss: 4.3040 
Epoch 26/100 
100/100 [==============================] - 2s 24ms/step - loss: 3.9627 
Epoch 27/100 
100/100 [==============================] - 2s 20ms/step - loss: 3.4976 
Epoch 28/100 
100/100 [==============================] - 2s 21ms/step - loss: 4.3168 
Epoch 29/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.2669 
Epoch 30/100 
100/100 [==============================] - 2s 23ms/step - loss: 4.0614 
Epoch 31/100 
100/100 [==============================] - 2s 23ms/step - loss: 4.0492 
Epoch 32/100 
100/100 [==============================] - 2s 20ms/step - loss: 3.8667 
Epoch 33/100 
100/100 [==============================] - 2s 21ms/step - loss: 4.7078 
Epoch 34/100 
100/100 [==============================] - 2s 20ms/step - loss: 3.8092 
Epoch 35/100 
100/100 [==============================] - 3s 31ms/step - loss: 3.8190 
Epoch 36/100 
100/100 [==============================] - 2s 23ms/step - loss: 3.7577 
Epoch 37/100 
100/100 [==============================] - 2s 21ms/step - loss: 3.9243 
Epoch 38/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.4415 
Epoch 39/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.0058 
Epoch 40/100 



100/100 [==============================] - 2s 22ms/step - loss: 4.2212 
Epoch 41/100 
100/100 [==============================] - 2s 23ms/step - loss: 3.8746 
Epoch 42/100 
100/100 [==============================] - 2s 20ms/step - loss: 3.5312 
Epoch 43/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.0531 
Epoch 44/100 
100/100 [==============================] - 2s 21ms/step - loss: 3.9304 
Epoch 45/100 
100/100 [==============================] - 3s 30ms/step - loss: 4.0197 
Epoch 46/100 
100/100 [==============================] - 2s 21ms/step - loss: 4.0842 
Epoch 47/100 
100/100 [==============================] - 2s 20ms/step - loss: 3.7493 
Epoch 48/100 
100/100 [==============================] - 3s 33ms/step - loss: 3.8759 
Epoch 49/100 
100/100 [==============================] - 2s 21ms/step - loss: 4.4397 
Epoch 50/100 
100/100 [==============================] - 2s 21ms/step - loss: 3.7914 
Epoch 51/100 
100/100 [==============================] - 2s 20ms/step - loss: 3.5741 
Epoch 52/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.1056 
Epoch 53/100 
100/100 [==============================] - 3s 27ms/step - loss: 4.0586 
Epoch 54/100 
100/100 [==============================] - 2s 21ms/step - loss: 3.7243 
Epoch 55/100 
100/100 [==============================] - 2s 20ms/step - loss: 3.9936 
Epoch 56/100 
100/100 [==============================] - 2s 20ms/step - loss: 3.5135 
Epoch 57/100 
100/100 [==============================] - 2s 25ms/step - loss: 3.9543 
Epoch 58/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.2004 
Epoch 59/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.4225 
Epoch 60/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.4181 
Epoch 61/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.0670 
Epoch 62/100 
100/100 [==============================] - 3s 27ms/step - loss: 4.3106 
Epoch 63/100 
100/100 [==============================] - 2s 20ms/step - loss: 3.7085 
Epoch 64/100 
100/100 [==============================] - 2s 20ms/step - loss: 3.7898 
Epoch 65/100 
100/100 [==============================] - 2s 20ms/step - loss: 3.9510 
Epoch 66/100 
100/100 [==============================] - 2s 20ms/step - loss: 3.7653 
Epoch 67/100 
100/100 [==============================] - 3s 27ms/step - loss: 3.6184 
Epoch 68/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.2421 
Epoch 69/100 
100/100 [==============================] - 2s 21ms/step - loss: 3.8267 
Epoch 70/100 
100/100 [==============================] - 2s 20ms/step - loss: 3.8067 
Epoch 71/100 
100/100 [==============================] - 2s 20ms/step - loss: 3.7800 
Epoch 72/100 
100/100 [==============================] - 3s 27ms/step - loss: 3.9919 
Epoch 73/100 



100/100 [==============================] - 2s 20ms/step - loss: 4.3193 
Epoch 74/100 
100/100 [==============================] - 2s 20ms/step - loss: 3.8108 
Epoch 75/100 
100/100 [==============================] - 2s 20ms/step - loss: 3.8260 
Epoch 76/100 
100/100 [==============================] - 3s 27ms/step - loss: 3.8263 
Epoch 77/100 
100/100 [==============================] - 2s 21ms/step - loss: 3.7684 
Epoch 78/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.0402 
Epoch 79/100 
100/100 [==============================] - 2s 20ms/step - loss: 4.2123 
Epoch 80/100 
100/100 [==============================] - 3s 27ms/step - loss: 3.8738 
Epoch 81/100 
100/100 [==============================] - 2s 21ms/step - loss: 3.8756 
Epoch 82/100 
100/100 [==============================] - 2s 20ms/step - loss: 3.4062 
Epoch 83/100 
100/100 [==============================] - 2s 20ms/step - loss: 3.7847 
Epoch 84/100 
100/100 [==============================] - 2s 21ms/step - loss: 3.8969 
Epoch 85/100 
100/100 [==============================] - 2s 25ms/step - loss: 3.7772 
Epoch 86/100 
100/100 [==============================] - 2s 23ms/step - loss: 3.7539 
Epoch 87/100 
100/100 [==============================] - 2s 19ms/step - loss: 3.9706 
Epoch 88/100 
100/100 [==============================] - 2s 20ms/step - loss: 3.5051 
Epoch 89/100 
100/100 [==============================] - 2s 20ms/step - loss: 3.4315 
Epoch 90/100 
100/100 [==============================] - 2s 20ms/step - loss: 3.9469 
Epoch 91/100 
100/100 [==============================] - 3s 27ms/step - loss: 3.8497 
Epoch 92/100 
100/100 [==============================] - 2s 21ms/step - loss: 3.8383 
Epoch 93/100 
100/100 [==============================] - 2s 22ms/step - loss: 3.7502 
Epoch 94/100 
100/100 [==============================] - 5s 48ms/step - loss: 3.7458 
Epoch 95/100 
100/100 [==============================] - 4s 38ms/step - loss: 3.9495 
Epoch 96/100 
100/100 [==============================] - 2s 20ms/step - loss: 3.6007 
Epoch 97/100 
100/100 [==============================] - 2s 21ms/step - loss: 3.9899 
Epoch 98/100 
100/100 [==============================] - 5s 45ms/step - loss: 3.5957 
Epoch 99/100 
100/100 [==============================] - 3s 33ms/step - loss: 4.2479 
Epoch 100/100 
100/100 [==============================] - 3s 32ms/step - loss: 3.4564 
1/1 [==============================] - 1s 521ms/step 

<ipython-input-20-cbba94134022>:107: FutureWarning: `multichannel` is a deprecated argum
ent name for `structural_similarity`. It will be removed in version 1.0. Please use `cha
nnel_axis` instead. 
  current_ssim_bicubic = ssim(hr_img_np, upscaled_img_bicubic_np, multichannel=True) 
<ipython-input-20-cbba94134022>:112: FutureWarning: `multichannel` is a deprecated argum
ent name for `structural_similarity`. It will be removed in version 1.0. Please use `cha
nnel_axis` instead. 
  current_ssim_model = ssim(hr_img_np, upscaled_img_model_np, multichannel=True) 



1/1 [==============================] - 0s 20ms/step 

1/1 [==============================] - 0s 19ms/step 

1/1 [==============================] - 0s 20ms/step 

1/1 [==============================] - 0s 33ms/step 



1/1 [==============================] - 0s 19ms/step 

1/1 [==============================] - 0s 19ms/step 

1/1 [==============================] - 0s 19ms/step 

1/1 [==============================] - 0s 19ms/step 

1/1 [==============================] - 0s 20ms/step 



Average PSNR (Bicubic): 34.97 
Average SSIM (Bicubic): 0.917 
Average PSNR (Model): 36.00 
Average SSIM (Model): 0.937 

In [22]: import tensorflow as tf 
from tensorflow.keras.layers import Input, Conv2D, Conv2DTranspose, LeakyReLU, Lambda, A
from tensorflow.keras.models import Model 
from tensorflow.keras.optimizers import Adam 
from tensorflow.keras.applications import VGG19 
from tensorflow.keras.preprocessing.image import ImageDataGenerator 
from tensorflow.keras.optimizers.schedules import ExponentialDecay 
import numpy as np 
from skimage.metrics import structural_similarity as ssim 
from skimage.metrics import peak_signal_noise_ratio as psnr 
import matplotlib.pyplot as plt 
 
def create_model1(scale=2): 
    inputs = tf.keras.Input(shape=(None, None, 3)) 
    x = Conv2D(128, (5, 5), padding='same')(inputs) 
    x = LeakyReLU(alpha=0.2)(x) 
 
    for _ in range(8): 
        x = residual_block(x, 128) 
 
    x = Conv2D(128 * (scale ** 2), (3, 3), padding='same')(x) 
    x = tf.nn.depth_to_space(x, scale) 
    x = LeakyReLU(alpha=0.2)(x) 
    x = Conv2D(3, (5, 5), padding='same')(x) 
 
    outputs = Add()([x, tf.keras.layers.UpSampling2D(size=(scale, scale), interpolation=
    model = Model(inputs, outputs) 
    return model 
 
vgg = VGG19(weights='imagenet', include_top=False, input_shape=(None, None, 3)) 
vgg.trainable = False 
 
def perceptual_loss(y_true, y_pred): 
    vgg_true = vgg(y_true) 
    vgg_pred = vgg(y_pred) 
    return tf.reduce_mean(tf.square(vgg_true - vgg_pred)) 
 
    model.compile(optimizer=Adam(learning_rate=1e-4), loss=['mean_absolute_error', perce
 
datagen = ImageDataGenerator( 
    rotation_range=20, 
    width_shift_range=0.1, 
    height_shift_range=0.1, 
    horizontal_flip=True 
) 
 
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( 
    initial_learning_rate=1e-4, 



    decay_steps=1000, 
    decay_rate=0.95, 
    staircase=True 
) 
optimizer = Adam(learning_rate=lr_schedule) 
 
def channel_attention(x, reduction_ratio=16): 
    _, _, _, c = x.shape 
    avg_pool = GlobalAveragePooling2D()(x) 
    avg_pool = Dense(c // reduction_ratio, activation='relu')(avg_pool) 
    avg_pool = Dense(c, activation='sigmoid')(avg_pool) 
    return Multiply()([x, avg_pool]) 
 
def residual_block(x, filters): 
    residual = x 
    x = Conv2D(filters, (3, 3), padding='same')(x) 
    x = LeakyReLU(alpha=0.2)(x) 
    x = Conv2D(filters, (3, 3), padding='same')(x) 
    x = channel_attention(x) 
    x = Add()([x, residual]) 
    x = LeakyReLU(alpha=0.2)(x) 
    return x 
 
def create_model2(scale=2): 
    inputs = tf.keras.Input(shape=(None, None, 3)) 
    x = Conv2D(64, (5, 5), padding='same')(inputs) 
    x = LeakyReLU(alpha=0.2)(x) 
 
    for _ in range(6): 
        x = residual_block(x, 64) 
 
    x = Conv2D(64 * (scale ** 2), (3, 3), padding='same')(x) 
    x = tf.nn.depth_to_space(x, scale) 
    x = LeakyReLU(alpha=0.2)(x) 
    x = Conv2D(3, (5, 5), padding='same')(x) 
 
    outputs = Add()([x, tf.keras.layers.UpSampling2D(size=(scale, scale), interpolation=
    model = Model(inputs, outputs) 
    return model 
 
from tensorflow.keras.models import Sequential 
 
#model 3 
def create_model3(scale=2): 
    model = Sequential() 
    model.add(Conv2D(64, (3, 3), padding='same', input_shape=(None, None, 3))) 
    model.add(LeakyReLU(alpha=0.2)) 
    model.add(Conv2D(64, (3, 3), padding='same')) 
    model.add(LeakyReLU(alpha=0.2)) 
    model.add(Conv2DTranspose(64, (3, 3), strides=(scale, scale), padding='same')) 
    model.add(LeakyReLU(alpha=0.2)) 
    model.add(Conv2D(3, (3, 3), padding='same', activation='tanh')) 
    return model 
 
def normalize(image): 
    image = tf.cast(image, tf.float32) 
    return image / 127.5 - 1 
 
def train_and_evaluate_model(model, model_name, val_dataset, epochs, steps_per_epoch): 
    model.fit(val_dataset, epochs=epochs, steps_per_epoch=steps_per_epoch) 
 
    psnr_values = [] 
    ssim_values = [] 
    for lr, hr in val_dataset: 
        sr = model.predict(lr) 
        hr = hr.numpy().squeeze() 



        sr = sr.squeeze() 
 
        psnr_value = psnr(hr, sr) 
        ssim_value = ssim(hr, sr, multichannel=True) 
 
        psnr_values.append(psnr_value) 
        ssim_values.append(ssim_value) 
 
    print(f"Average PSNR for {model_name}: {np.mean(psnr_values)}") 
    print(f"Average SSIM for {model_name}: {np.mean(ssim_values)}") 
 
    return model 
 
def compare_images(models, val_dataset, num_samples=10): 
    psnr_values_bicubic = [] 
    ssim_values_bicubic = [] 
    psnr_values_models = {model_name: [] for model_name in models} 
    ssim_values_models = {model_name: [] for model_name in models} 
 
    for lr_img, hr_img in val_dataset.take(num_samples): 
        bicubic_img = tf.image.resize(lr_img, [hr_img.shape[1], hr_img.shape[2]], method
 
        if bicubic_img.dtype != tf.uint8: 
            bicubic_img = tf.clip_by_value(bicubic_img, 0.0, 255.0) 
            bicubic_img = tf.cast(bicubic_img, tf.uint8) 
 
        hr_img_np = hr_img.numpy()[0] 
        bicubic_img_np = bicubic_img.numpy()[0] 
 
        current_psnr_bicubic = psnr(hr_img_np, bicubic_img_np, data_range=hr_img_np.max(
        current_ssim_bicubic = ssim(hr_img_np, bicubic_img_np, multichannel=True) 
        psnr_values_bicubic.append(current_psnr_bicubic) 
        ssim_values_bicubic.append(current_ssim_bicubic) 
 
        plt.figure(figsize=(24, 6)) 
        plt.subplot(1, len(models) + 3, 1) 
        plt.imshow(lr_img.numpy()[0]) 
        plt.title('Low-Resolution') 
        plt.axis('off') 
 
        plt.subplot(1, len(models) + 3, 2) 
        plt.imshow(bicubic_img_np) 
        plt.title(f'Bicubic\nPSNR: {current_psnr_bicubic:.2f}, SSIM: {current_ssim_bicub
        plt.axis('off') 
 
        for j, (model_name, model) in enumerate(models.items()): 
            sr_img = model.predict(lr_img) 
 
            if sr_img.dtype != tf.uint8: 
                sr_img = tf.clip_by_value(sr_img, 0.0, 255.0) 
                sr_img = tf.cast(sr_img, tf.uint8) 
 
            sr_img_np = sr_img.numpy()[0] 
 
            current_psnr_model = psnr(hr_img_np, sr_img_np, data_range=hr_img_np.max() - 
            current_ssim_model = ssim(hr_img_np, sr_img_np, multichannel=True) 
            psnr_values_models[model_name].append(current_psnr_model) 
            ssim_values_models[model_name].append(current_ssim_model) 
 
            plt.subplot(1, len(models) + 3, j + 3) 
            plt.imshow(sr_img_np) 
            plt.title(f'{model_name}\nPSNR: {current_psnr_model:.2f}, SSIM: {current_ssi
            plt.axis('off') 
 
        plt.subplot(1, len(models) + 3, len(models) + 3) 
        plt.imshow(hr_img_np) 



Epoch 1/50 
100/100 [==============================] - 12s 23ms/step - loss: 5.3415 
Epoch 2/50 
100/100 [==============================] - 2s 20ms/step - loss: 4.5209 
Epoch 3/50 
100/100 [==============================] - 2s 22ms/step - loss: 4.7110 
Epoch 4/50 
100/100 [==============================] - 2s 21ms/step - loss: 5.0533 
Epoch 5/50 
100/100 [==============================] - 3s 27ms/step - loss: 4.6831 
Epoch 6/50 
100/100 [==============================] - 2s 20ms/step - loss: 4.8695 
Epoch 7/50 
100/100 [==============================] - 2s 21ms/step - loss: 4.1016 
Epoch 8/50 
100/100 [==============================] - 2s 20ms/step - loss: 4.7641 
Epoch 9/50 
100/100 [==============================] - 2s 21ms/step - loss: 4.0010 

        plt.title('High-Resolution') 
        plt.axis('off') 
 
        plt.tight_layout() 
        plt.show() 
 
    print(f'Average PSNR (Bicubic): {np.mean(psnr_values_bicubic):.2f}') 
    print(f'Average SSIM (Bicubic): {np.mean(ssim_values_bicubic):.3f}') 
 
    for model_name in models: 
        print(f'Average PSNR ({model_name}): {np.mean(psnr_values_models[model_name]):.2
        print(f'Average SSIM ({model_name}): {np.mean(ssim_values_models[model_name]):.3
 
scale = 2 
val_div2k = DIV2K(scale=scale, subset='valid', downgrade='bicubic') 
val_dataset = val_div2k.dataset(batch_size=1, repeat_count=1) 
 
# Normalize images for model 3 
val_dataset_normalized = val_dataset.map(lambda lr, hr: (normalize(lr), normalize(hr))) 
 
val_dataset = val_dataset.prefetch(tf.data.experimental.AUTOTUNE) 
val_dataset_normalized = val_dataset_normalized.prefetch(tf.data.experimental.AUTOTUNE) 
 
total_samples = len(val_div2k) 
batch_size = 1 
steps_per_epoch = total_samples // batch_size 
 
# Train and evaluate each model 
models = {} 
 
# Model 1 
model1 = create_model1(scale) 
model1.compile(optimizer=Adam(learning_rate=1e-4), loss=['mean_absolute_error', perceptu
models['Model 3'] = train_and_evaluate_model(model1, 'Model 3', val_dataset, epochs=50, 
 
# Model 2 
model2 = create_model2(scale) 
model2.compile(optimizer=Adam(learning_rate=1e-4), loss='mean_absolute_error') 
models['Model 2'] = train_and_evaluate_model(model2, 'Model 2', val_dataset, epochs=50, 
 
# Model 3 
model3 = create_model3(scale) 
model3.compile(optimizer=Adam(learning_rate=1e-4), loss='mean_squared_error') 
models['Model 1'] = train_and_evaluate_model(model3, 'Model 1', val_dataset_normalized, 
 
# Compare images from each model 
compare_images(models, val_dataset) 



Epoch 10/50 
100/100 [==============================] - 3s 26ms/step - loss: 4.8281 
Epoch 11/50 
100/100 [==============================] - 2s 22ms/step - loss: 4.7039 
Epoch 12/50 
100/100 [==============================] - 2s 22ms/step - loss: 4.1234 
Epoch 13/50 
100/100 [==============================] - 2s 21ms/step - loss: 4.4925 
Epoch 14/50 
100/100 [==============================] - 2s 24ms/step - loss: 3.7893 
Epoch 15/50 
100/100 [==============================] - 3s 25ms/step - loss: 4.4041 
Epoch 16/50 
100/100 [==============================] - 2s 21ms/step - loss: 4.0777 
Epoch 17/50 
100/100 [==============================] - 2s 21ms/step - loss: 5.2249 
Epoch 18/50 
100/100 [==============================] - 2s 22ms/step - loss: 4.1420 
Epoch 19/50 
100/100 [==============================] - 2s 25ms/step - loss: 4.2884 
Epoch 20/50 
100/100 [==============================] - 2s 23ms/step - loss: 4.3409 
Epoch 21/50 
100/100 [==============================] - 2s 21ms/step - loss: 4.4569 
Epoch 22/50 
100/100 [==============================] - 2s 24ms/step - loss: 4.1945 
Epoch 23/50 
100/100 [==============================] - 2s 24ms/step - loss: 4.5564 
Epoch 24/50 
100/100 [==============================] - 2s 20ms/step - loss: 4.4726 
Epoch 25/50 
100/100 [==============================] - 2s 21ms/step - loss: 3.9612 
Epoch 26/50 
100/100 [==============================] - 2s 20ms/step - loss: 3.8823 
Epoch 27/50 
100/100 [==============================] - 2s 21ms/step - loss: 3.7541 
Epoch 28/50 
100/100 [==============================] - 3s 26ms/step - loss: 5.1146 
Epoch 29/50 
100/100 [==============================] - 2s 22ms/step - loss: 4.1593 
Epoch 30/50 
100/100 [==============================] - 2s 21ms/step - loss: 4.2379 
Epoch 31/50 
100/100 [==============================] - 2s 23ms/step - loss: 3.8970 
Epoch 32/50 
100/100 [==============================] - 3s 25ms/step - loss: 4.1728 
Epoch 33/50 
100/100 [==============================] - 2s 21ms/step - loss: 3.9019 
Epoch 34/50 
100/100 [==============================] - 2s 20ms/step - loss: 3.8172 
Epoch 35/50 
100/100 [==============================] - 3s 25ms/step - loss: 4.2406 
Epoch 36/50 
100/100 [==============================] - 2s 21ms/step - loss: 4.3094 
Epoch 37/50 
100/100 [==============================] - 2s 22ms/step - loss: 3.9017 
Epoch 38/50 
100/100 [==============================] - 2s 22ms/step - loss: 3.9764 
Epoch 39/50 
100/100 [==============================] - 3s 28ms/step - loss: 3.5434 
Epoch 40/50 
100/100 [==============================] - 2s 20ms/step - loss: 4.0876 
Epoch 41/50 
100/100 [==============================] - 2s 21ms/step - loss: 3.6392 
Epoch 42/50 
100/100 [==============================] - 2s 20ms/step - loss: 3.9227 



Epoch 43/50 
100/100 [==============================] - 2s 21ms/step - loss: 4.3326 
Epoch 44/50 
100/100 [==============================] - 3s 27ms/step - loss: 3.9427 
Epoch 45/50 
100/100 [==============================] - 2s 20ms/step - loss: 3.9147 
Epoch 46/50 
100/100 [==============================] - 2s 20ms/step - loss: 4.2626 
Epoch 47/50 
100/100 [==============================] - 2s 23ms/step - loss: 3.6182 
Epoch 48/50 
100/100 [==============================] - 2s 22ms/step - loss: 4.0102 
Epoch 49/50 
100/100 [==============================] - 3s 26ms/step - loss: 3.9486 
Epoch 50/50 
100/100 [==============================] - 2s 20ms/step - loss: 4.0149 
1/1 [==============================] - 0s 331ms/step 
1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - 0s 22ms/step 

<ipython-input-22-1682c2cff82a>:117: UserWarning: Inputs have mismatched dtype.  Setting 
data_range based on image_true. 
  psnr_value = psnr(hr, sr) 
<ipython-input-22-1682c2cff82a>:118: FutureWarning: `multichannel` is a deprecated argum
ent name for `structural_similarity`. It will be removed in version 1.0. Please use `cha
nnel_axis` instead. 
  ssim_value = ssim(hr, sr, multichannel=True) 
1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 24ms/step 
1/1 [==============================] - 0s 23ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - 0s 22ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 24ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 24ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 23ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 20ms/step 



1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 22ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 32ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 22ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 40ms/step 
1/1 [==============================] - 0s 31ms/step 
1/1 [==============================] - 0s 33ms/step 
1/1 [==============================] - 0s 33ms/step 
1/1 [==============================] - 0s 32ms/step 
1/1 [==============================] - 0s 34ms/step 
1/1 [==============================] - 0s 37ms/step 
Average PSNR for Model 3: 36.005349442905505 
Average SSIM for Model 3: 0.9280159842924234 
Epoch 1/50 
100/100 [==============================] - 9s 17ms/step - loss: 5.3696 
Epoch 2/50 
100/100 [==============================] - 2s 17ms/step - loss: 4.9430 
Epoch 3/50 
100/100 [==============================] - 2s 20ms/step - loss: 4.8713 



Epoch 4/50 
100/100 [==============================] - 2s 23ms/step - loss: 4.5624 
Epoch 5/50 
100/100 [==============================] - 2s 17ms/step - loss: 4.5936 
Epoch 6/50 
100/100 [==============================] - 2s 16ms/step - loss: 4.9759 
Epoch 7/50 
100/100 [==============================] - 2s 16ms/step - loss: 4.5547 
Epoch 8/50 
100/100 [==============================] - 2s 23ms/step - loss: 5.3057 
Epoch 9/50 
100/100 [==============================] - 2s 16ms/step - loss: 4.5518 
Epoch 10/50 
100/100 [==============================] - 2s 18ms/step - loss: 4.5135 
Epoch 11/50 
100/100 [==============================] - 2s 18ms/step - loss: 4.8147 
Epoch 12/50 
100/100 [==============================] - 2s 17ms/step - loss: 4.5370 
Epoch 13/50 
100/100 [==============================] - 2s 18ms/step - loss: 4.6813 
Epoch 14/50 
100/100 [==============================] - 2s 23ms/step - loss: 4.4705 
Epoch 15/50 
100/100 [==============================] - 2s 16ms/step - loss: 4.6332 
Epoch 16/50 
100/100 [==============================] - 2s 17ms/step - loss: 3.9183 
Epoch 17/50 
100/100 [==============================] - 2s 16ms/step - loss: 4.6467 
Epoch 18/50 
100/100 [==============================] - 2s 17ms/step - loss: 4.4595 
Epoch 19/50 
100/100 [==============================] - 2s 16ms/step - loss: 4.5318 
Epoch 20/50 
100/100 [==============================] - 2s 19ms/step - loss: 4.4685 
Epoch 21/50 
100/100 [==============================] - 2s 16ms/step - loss: 4.0639 
Epoch 22/50 
100/100 [==============================] - 2s 18ms/step - loss: 4.7729 
Epoch 23/50 
100/100 [==============================] - 2s 17ms/step - loss: 4.2310 
Epoch 24/50 
100/100 [==============================] - 2s 17ms/step - loss: 4.2481 
Epoch 25/50 
100/100 [==============================] - 2s 20ms/step - loss: 4.2921 
Epoch 26/50 
100/100 [==============================] - 2s 17ms/step - loss: 4.2914 
Epoch 27/50 
100/100 [==============================] - 2s 17ms/step - loss: 4.2811 
Epoch 28/50 
100/100 [==============================] - 2s 16ms/step - loss: 4.0340 
Epoch 29/50 
100/100 [==============================] - 2s 16ms/step - loss: 4.1832 
Epoch 30/50 
100/100 [==============================] - 2s 16ms/step - loss: 4.3801 
Epoch 31/50 
100/100 [==============================] - 2s 22ms/step - loss: 4.9571 
Epoch 32/50 
100/100 [==============================] - 2s 17ms/step - loss: 4.2957 
Epoch 33/50 
100/100 [==============================] - 2s 17ms/step - loss: 3.7843 
Epoch 34/50 
100/100 [==============================] - 2s 18ms/step - loss: 4.2908 
Epoch 35/50 
100/100 [==============================] - 2s 17ms/step - loss: 4.1710 
Epoch 36/50 
100/100 [==============================] - 2s 17ms/step - loss: 4.1996 



Epoch 37/50 
100/100 [==============================] - 2s 23ms/step - loss: 4.2383 
Epoch 38/50 
100/100 [==============================] - 2s 16ms/step - loss: 3.9751 
Epoch 39/50 
100/100 [==============================] - 2s 16ms/step - loss: 4.6707 
Epoch 40/50 
100/100 [==============================] - 2s 17ms/step - loss: 4.1028 
Epoch 41/50 
100/100 [==============================] - 2s 17ms/step - loss: 4.2331 
Epoch 42/50 
100/100 [==============================] - 2s 23ms/step - loss: 4.3261 
Epoch 43/50 
100/100 [==============================] - 2s 18ms/step - loss: 4.0355 
Epoch 44/50 
100/100 [==============================] - 2s 17ms/step - loss: 4.2321 
Epoch 45/50 
100/100 [==============================] - 2s 18ms/step - loss: 4.1401 
Epoch 46/50 
100/100 [==============================] - 2s 18ms/step - loss: 3.7876 
Epoch 47/50 
100/100 [==============================] - 2s 17ms/step - loss: 4.1154 
Epoch 48/50 
100/100 [==============================] - 2s 20ms/step - loss: 4.2950 
Epoch 49/50 
100/100 [==============================] - 2s 18ms/step - loss: 3.8308 
Epoch 50/50 
100/100 [==============================] - 2s 17ms/step - loss: 4.7636 
1/1 [==============================] - 0s 271ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 30ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 22ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - 0s 22ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 22ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 



1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 22ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 26ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 34ms/step 
1/1 [==============================] - 0s 32ms/step 
1/1 [==============================] - 0s 29ms/step 
1/1 [==============================] - 0s 28ms/step 
1/1 [==============================] - 0s 31ms/step 
1/1 [==============================] - 0s 28ms/step 
1/1 [==============================] - 0s 27ms/step 
1/1 [==============================] - 0s 27ms/step 
1/1 [==============================] - 0s 28ms/step 
1/1 [==============================] - 0s 27ms/step 
1/1 [==============================] - 0s 32ms/step 
1/1 [==============================] - 0s 30ms/step 
1/1 [==============================] - 0s 28ms/step 
1/1 [==============================] - 0s 33ms/step 
1/1 [==============================] - 0s 29ms/step 
1/1 [==============================] - 0s 33ms/step 
1/1 [==============================] - 0s 33ms/step 
Average PSNR for Model 2: 36.13714561155611 
Average SSIM for Model 2: 0.9212456011135979 
Epoch 1/50 
100/100 [==============================] - 3s 6ms/step - loss: 0.1458 



Epoch 2/50 
100/100 [==============================] - 1s 7ms/step - loss: 0.0485 
Epoch 3/50 
100/100 [==============================] - 1s 7ms/step - loss: 0.0325 
Epoch 4/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0276 
Epoch 5/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0230 
Epoch 6/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0204 
Epoch 7/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0163 
Epoch 8/50 
100/100 [==============================] - 1s 10ms/step - loss: 0.0181 
Epoch 9/50 
100/100 [==============================] - 1s 7ms/step - loss: 0.0160 
Epoch 10/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0140 
Epoch 11/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0135 
Epoch 12/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0126 
Epoch 13/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0121 
Epoch 14/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0135 
Epoch 15/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0103 
Epoch 16/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0127 
Epoch 17/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0114 
Epoch 18/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0098 
Epoch 19/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0099 
Epoch 20/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0108 
Epoch 21/50 
100/100 [==============================] - 1s 10ms/step - loss: 0.0101 
Epoch 22/50 
100/100 [==============================] - 1s 7ms/step - loss: 0.0099 
Epoch 23/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0090 
Epoch 24/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0093 
Epoch 25/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0086 
Epoch 26/50 
100/100 [==============================] - 1s 7ms/step - loss: 0.0117 
Epoch 27/50 
100/100 [==============================] - 1s 7ms/step - loss: 0.0098 
Epoch 28/50 
100/100 [==============================] - 1s 7ms/step - loss: 0.0091 
Epoch 29/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0087 
Epoch 30/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0092 
Epoch 31/50 
100/100 [==============================] - 1s 7ms/step - loss: 0.0080 
Epoch 32/50 
100/100 [==============================] - 1s 7ms/step - loss: 0.0084 
Epoch 33/50 
100/100 [==============================] - 1s 11ms/step - loss: 0.0078 
Epoch 34/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0092 



Epoch 35/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0083 
Epoch 36/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0091 
Epoch 37/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0084 
Epoch 38/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0086 
Epoch 39/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0074 
Epoch 40/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0078 
Epoch 41/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0076 
Epoch 42/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0072 
Epoch 43/50 
100/100 [==============================] - 1s 9ms/step - loss: 0.0087 
Epoch 44/50 
100/100 [==============================] - 1s 10ms/step - loss: 0.0079 
Epoch 45/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0077 
Epoch 46/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0088 
Epoch 47/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0085 
Epoch 48/50 
100/100 [==============================] - 1s 7ms/step - loss: 0.0078 
Epoch 49/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0074 
Epoch 50/50 
100/100 [==============================] - 1s 6ms/step - loss: 0.0071 
1/1 [==============================] - 0s 85ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 22ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 



1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - 0s 16ms/step 
1/1 [==============================] - 0s 16ms/step 
1/1 [==============================] - 0s 16ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 16ms/step 
1/1 [==============================] - 0s 16ms/step 
1/1 [==============================] - 0s 16ms/step 
1/1 [==============================] - 0s 24ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 23ms/step 
1/1 [==============================] - 0s 26ms/step 
1/1 [==============================] - 0s 29ms/step 
1/1 [==============================] - 0s 23ms/step 
1/1 [==============================] - 0s 29ms/step 
1/1 [==============================] - 0s 24ms/step 
1/1 [==============================] - 0s 26ms/step 
1/1 [==============================] - 0s 28ms/step 
1/1 [==============================] - 0s 29ms/step 
1/1 [==============================] - 0s 24ms/step 
1/1 [==============================] - 0s 24ms/step 
1/1 [==============================] - 0s 27ms/step 
1/1 [==============================] - 0s 26ms/step 
1/1 [==============================] - 0s 24ms/step 
1/1 [==============================] - 0s 32ms/step 
1/1 [==============================] - 0s 24ms/step 
1/1 [==============================] - 0s 25ms/step 
1/1 [==============================] - 0s 24ms/step 
1/1 [==============================] - 0s 27ms/step 
1/1 [==============================] - 0s 28ms/step 
1/1 [==============================] - 0s 34ms/step 
1/1 [==============================] - 0s 26ms/step 
1/1 [==============================] - 0s 29ms/step 
1/1 [==============================] - 0s 16ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 16ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 24ms/step 
1/1 [==============================] - 0s 18ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 17ms/step 
1/1 [==============================] - 0s 23ms/step 
1/1 [==============================] - 0s 16ms/step 
1/1 [==============================] - 0s 16ms/step 



Average PSNR for Model 1: 28.315669545395334 
Average SSIM for Model 1: 0.863423764705658 
1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - ETA: 0s

<ipython-input-22-1682c2cff82a>:145: FutureWarning: `multichannel` is a deprecated argum
ent name for `structural_similarity`. It will be removed in version 1.0. Please use `cha
nnel_axis` instead. 
  current_ssim_bicubic = ssim(hr_img_np, bicubic_img_np, multichannel=True) 
<ipython-input-22-1682c2cff82a>:170: FutureWarning: `multichannel` is a deprecated argum
ent name for `structural_similarity`. It will be removed in version 1.0. Please use `cha
nnel_axis` instead. 
  current_ssim_model = ssim(hr_img_np, sr_img_np, multichannel=True) 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 75ms/step 

1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 17ms/step 

1/1 [==============================] - 0s 22ms/step 
1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - 0s 19ms/step 

1/1 [==============================] - 0s 22ms/step 
1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - 0s 24ms/step 

1/1 [==============================] - 0s 27ms/step 
1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - 0s 19ms/step 



1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 18ms/step 

1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - 0s 27ms/step 
1/1 [==============================] - 0s 18ms/step 

1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 19ms/step 

1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 19ms/step 
1/1 [==============================] - 0s 17ms/step 

1/1 [==============================] - 0s 21ms/step 
1/1 [==============================] - 0s 20ms/step 
1/1 [==============================] - 0s 18ms/step 

Average PSNR (Bicubic): 32.29 



Average SSIM (Bicubic): 0.904 
Average PSNR (Model 3): 34.00 
Average SSIM (Model 3): 0.927 
Average PSNR (Model 2): 33.71 
Average SSIM (Model 2): 0.924 
Average PSNR (Model 1): 4.80 
Average SSIM (Model 1): 0.025 
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